LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

By LabMedica International staff writers
Posted on 18 Nov 2024
Print article
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists must perform genetic sequencing on RNA extracted from the tumor. Increasingly, clinicians are using not only the tumor’s location to guide treatment decisions but also the specific genes that fuel its progression. The activation or deactivation of certain genes can make a tumor more aggressive, more likely to spread, or more or less responsive to various treatments, such as chemotherapy, immunotherapy, and hormone therapies. However, accessing this critical genetic information often requires expensive and time-consuming sequencing. Now, researchers have developed an artificial intelligence (AI)-powered computational tool that can predict the activity of thousands of genes within tumor cells, using only standard microscopy images from the biopsy. This tool, named SEQUOIA (Slide-based Expression Quantification Using Linearized Attention), was created with data from over 7,000 diverse tumor samples. It has shown the ability to predict genetic variations in breast cancers and patient outcomes, all based on routine biopsy images.

The research team at Stanford Medicine (Stanford, CA, USA) was aware that gene activity within individual cells can change their appearance in ways that are often invisible to the naked eye. To uncover these patterns, they turned to AI. Their study used 7,584 cancer biopsies from 16 different cancer types. Each biopsy was sliced into thin sections and stained using hematoxylin and eosin, a standard method for visualizing cancer cell morphology. Data on the transcriptomes of these cancers—showing which genes were being actively expressed—was also available. By integrating these biopsies with other datasets, including images from thousands of healthy cells and transcriptomic data, the AI program, as described in Nature Communications, was able to predict the expression patterns of more than 15,000 genes from the stained biopsy images.

In certain cancer types, the AI’s predictions of gene activity had more than an 80% correlation with the actual gene activity data. The accuracy of the model generally improved when more samples from a specific cancer type were included in the training data. According to the researchers, clinicians rarely focus on individual genes when making decisions but instead consider gene signatures composed of hundreds of genes. For instance, many cancer cells activate extensive groups of genes related to inflammation or cell growth. SEQUOIA was even more accurate at predicting whether such large genomic programs were activated than it was at predicting individual gene expression. To make the results more accessible, the researchers programmed SEQUOIA to display genetic findings as a visual map of the tumor biopsy, allowing clinicians and researchers to see how genetic variations vary across different areas of the tumor.

To test the clinical utility of SEQUOIA, the team focused on breast cancer genes that are already used in commercial tests. For example, the FDA-approved MammaPrint test evaluates 70 breast-cancer-related genes to generate a risk score for cancer recurrence. The researchers demonstrated that SEQUOIA could generate the same risk score as MammaPrint using only the stained tumor biopsy images. The results were confirmed in multiple cohorts of breast cancer patients, and in each case, patients classified as high risk by SEQUOIA experienced worse outcomes, including higher recurrence rates and shorter times to recurrence. Although SEQUOIA is not yet ready for clinical use—it still requires validation through clinical trials and FDA approval—the researchers are continuing to refine the algorithm and explore its potential. In the future, SEQUOIA could reduce the need for expensive genetic expression tests.

“This kind of software could be used to quickly identify gene signatures in patients’ tumors, speeding up clinical decision-making and saving the health care system thousands of dollars,” said Olivier Gevaert, PhD, a professor of biomedical data science and the senior author of the paper. “We’ve shown how useful this could be for breast cancer, and we can now use it for all cancers and look at any gene signature that is out there. It’s a whole new source of data that we didn’t have before.”

New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
H.pylori Test
Humasis H.pylori Card
New
Coagulation Analyzer
CS-2400

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.