Computational Tool Predicts Immunotherapy Outcomes for Metastatic Breast Cancer Patients
|
By LabMedica International staff writers Posted on 31 Oct 2024 |

Immunotherapy aims to enhance the body’s immune response to target cancer cells, but not all patients experience a positive reaction to such treatments. Identifying which patients will benefit from immunotherapy is crucial, given the high toxicity associated with these therapies. Previous research has investigated whether the presence or absence of specific cells or the expression levels of various molecules within tumors can indicate a patient's likelihood of responding to immunotherapy. These molecules, known as predictive biomarkers, play an important role in selecting appropriate treatments for patients. Unfortunately, the accuracy of current predictive biomarkers in determining who will benefit from immunotherapy is limited. Additionally, conducting a large-scale evaluation of the characteristics that predict treatment response typically requires collecting tumor biopsies and blood samples from numerous patients and performing several assays, which presents significant challenges. Researchers have now leveraged computational tools to create a method for assessing which patients with metastatic triple-negative breast cancer may benefit from immunotherapy.
A team of computational scientists from the Johns Hopkins Kimmel Cancer Center (Baltimore, MD, USA) and the Johns Hopkins University School of Medicine (Baltimore, MD, USA) utilized a mathematical model called quantitative systems pharmacology to generate 1,635 virtual patients with metastatic triple-negative breast cancer and conducted treatment simulations using the immunotherapy drug pembrolizumab. They analyzed this data with advanced computational tools, including statistical and machine learning methods, to identify biomarkers that can accurately predict treatment responses. Their focus was on determining which patients would respond positively to treatment and which would not. By utilizing the partially synthetic data generated from the virtual clinical trial, the researchers evaluated the performance of 90 biomarkers both individually and in combinations of two, three, and four.
The findings revealed that pretreatment biomarkers, which are measurements taken from tumor biopsies or blood samples before treatment begins, had limited effectiveness in predicting treatment outcomes. Conversely, on-treatment biomarkers, which are collected after the initiation of treatment, proved to be more predictive of outcomes. Interestingly, the study found that some commonly utilized biomarker measurements, such as the expression of PD-L1 and the presence of lymphocytes within the tumor, performed better when assessed before treatment commenced rather than after it started. The researchers also investigated the accuracy of non-invasive measurements, such as immune cell counts in the blood, in forecasting treatment outcomes. According to their research published in the Proceedings of the National Academy of Sciences, some blood-based biomarkers were found to be comparably effective as tumor- or lymph node-based biomarkers in identifying patients likely to respond to treatment, suggesting a less invasive predictive approach.
Measurements of changes in tumor size, which can be easily obtained through CT scans, also showed potential as predictive indicators. Notably, these measurements taken within two weeks of initiating treatment demonstrated significant potential in identifying who would respond favorably if the treatment continued. To confirm their findings, the investigators conducted a virtual clinical trial selecting patients based on tumor diameter changes at the two-week mark after starting treatment. Remarkably, the simulated response rates more than doubled—from 11% to 25%. This underscores the potential of noninvasive biomarkers as alternatives when collecting tumor biopsy samples is not feasible. Overall, these new insights highlight the possibility of better patient selection for immunotherapy in metastatic breast cancer cases. The researchers anticipate that these findings will aid in designing future clinical studies, with the methodology potentially applicable to other cancer types.
“Predictive biomarkers are critical as we develop optimized strategies for triple-negative breast cancer, so as to avoid overtreatment in patients expected to do well without immunotherapy, and undertreatment in those who do not respond well to immunotherapy,” said study co-author Cesar Santa-Maria, M.D., an associate professor of oncology and breast medical oncologist at the Johns Hopkins Kimmel Cancer Center. “The complexities of the tumor microenvironment make biomarker discovery in the clinic challenging, but technologies leveraging in-silico [computer-based] modeling have the potential to capture such complexities and aid in patient selection for therapy.”
Latest Pathology News
- Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
- First-Of-Its-Kind Test Identifies Autism Risk at Birth
- AI Algorithms Improve Genetic Mutation Detection in Cancer Diagnostics
- Skin Biopsy Offers New Diagnostic Method for Neurodegenerative Diseases
- Fast Label-Free Method Identifies Aggressive Cancer Cells
- New X-Ray Method Promises Advances in Histology
- Single-Cell Profiling Technique Could Guide Early Cancer Detection
- Intraoperative Tumor Histology to Improve Cancer Surgeries
- Rapid Stool Test Could Help Pinpoint IBD Diagnosis
- AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery
- Deep Learning–Based Method Improves Cancer Diagnosis
- ADLM Updates Expert Guidance on Urine Drug Testing for Patients in Emergency Departments
- New Age-Based Blood Test Thresholds to Catch Ovarian Cancer Earlier
- Genetics and AI Improve Diagnosis of Aortic Stenosis
- AI Tool Simultaneously Identifies Genetic Mutations and Disease Type
- Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







