LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Exhaled-Breath Test Shows Promise for Detection of Lung Cancer

By LabMedica International staff writers
Posted on 19 Jul 2024
Image: The EV-CATCHER assay (Photo courtesy of Journal of Extracellular Vesicles; doi.org/10.1002/jev2.12110)
Image: The EV-CATCHER assay (Photo courtesy of Journal of Extracellular Vesicles; doi.org/10.1002/jev2.12110)

Researchers are advancing the development of an exhaled-breath test to detect lung diseases, including lung cancer. Two pivotal studies published in the Journal of Extracellular Vesicles detail their success in isolating and analyzing lung biomarkers from human breath and utilizing animal models to further explore and possibly identify crucial markers for the early and non-invasive detection of metastatic lung tumors. While substantial efforts are needed to identify a spectrum of biomarkers and validate their clinical relevance for human patients, these publications provide a scientific framework for continued research.

The research by scientists at Hackensack Meridian Health (Edison, NJ, USA) focuses on capturing and characterizing extracellular vesicles (EVs), nanoparticles released by cells into fluids like blood and serum. Cancer cells release these particles abundantly, making them prime targets for early disease detection. The researchers have initiated biomarker discovery projects for several cancers, including lung, prostate, cervical, and bladder cancers, using liquid biopsies. They have developed a technology called EV-CATCHER that selectively isolates these nanoparticles from biofluids and employs next-generation sequencing to examine small-RNAs within the nanoparticles for non-invasive detection of lesions and tumors that could be developing within the body. The team is now applying the EV-CATCHER technology to isolate EVs from human exhaled breath, which carries biomarkers of lung disease, potentially transforming the diagnosis and monitoring of lung conditions without invasive lung sampling.

In their most recent study, they analyzed airway samples from 69 individuals, demonstrating that microRNA profiles in exhaled EVs matched those from deeper lung samples obtained through more invasive methods like bronchoalveolar lavages. In another pivotal study aimed at detecting lung cancer, they analyzed microRNA content in exhaled EVs collected from breath condensates of 18 individuals—12 healthy and six with stage-IV lung cancer. Their findings revealed distinct microRNA expression profiles in exhaled EVs that could differentiate between individuals with and without lung cancer. An earlier study with mouse models, published in March in the journal Extracellular Vesicles and Circulating Nucleic Acids, demonstrated the ability to detect microRNAs from human-derived tumor cells in exhaled breath within 1-2 weeks of injecting human cancer cells, using EV-CATCHER to capture tumor EVs from exhaled breath. Although further refinement of biomarker selection is necessary, the research indicates promising potential for diagnosing lung diseases, notably lung cancer, using this innovative approach.

“We envision that expanding our approach to study human primary and other secondary lung cancers, in adequately-powered animal studies, has the potential to identify relevant exhaled human EV biomarkers,” they wrote. “Furthermore, since EV-CATCHER can easily be customized to target surface markers of specific EV subpopulations, we foresee that using it to separate lung tumor cell-derived exhaled EVs from immune and innate cell-derived EVs may help further improve the selection of exhaled tumor EVs for the fine-tuned detection of different types of lung cancer.”

Related Links:
Hackensack Meridian Health

New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Collection and Transport System
PurSafe Plus®
Capillary Blood Collection Tube
IMPROMINI M3

Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more