LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Nanotech to Further Enhance Sensitivity and Accuracy of ELISA Testing for Cancer Screening

By LabMedica International staff writers
Posted on 01 Jul 2024
Image: A tray showing an ELISA diagnostic using the nanoparticles (Photo courtesy of Antoine Hart/UCF)
Image: A tray showing an ELISA diagnostic using the nanoparticles (Photo courtesy of Antoine Hart/UCF)

The early detection of serious diseases such as cancer or dementia is crucial for effective treatment and improving survival rates. One of the leading methods used for this purpose is the enzyme-linked immunosorbent assay (ELISA), a popular technology in disease screenings. Building upon previous advancements in nanoparticle research, scientists are now working on further enhancing the sensitivity and accuracy of ELISA tests for detecting cancers and other diseases.

The promising nanoparticle research being conducted by Associate Professor Xiaohu Xia at the University of Central Florida’s (UCF, Orlando, FL, USA) Department of Chemistry has the potential to increase the accuracy of disease detection by over 300 times compared to current market standards. Supported by a USD 1.3 million grant from the National Institutes of Health, Xia's four-year project aims to boost the diagnostic performance of ELISA tests by utilizing custom-designed nickel-platinum nanoparticles that attach to specific disease markers like proteins and hormones in fluid samples. Although nanoparticles have been previously explored in ELISA tests, significant enhancements in diagnostic sensitivity have not been achieved for many years. Xia's work seeks to end this stagnation by replacing traditional peroxidase enzymes from horseradish with nanoparticle-based artificial enzyme "mimics," which offer greater stability and activity, potentially leading to more dependable and accurate ELISA test results.

In his ongoing study, Xia plans to optimize and demonstrate the effectiveness of these nanoparticles with clinical samples, marking the first such attempt in his research. He is refining the nanoparticles' structure to create the most effective artificial enzymes for diagnostic use. These nanoparticles will act as advanced artificial "mimics" of conventional enzymes, reacting in such a way that they produce a color change with bioreceptors like antibodies when disease markers are detected. The intensity of the color change indicates the level of the biomarker present, with stronger colors indicating higher concentrations. The high sensitivity of the tests is critical to avoid false negatives, which could hamper timely treatment. Xia is optimistic that his research will not only provide faster results and clearer sample coloration but also simplify the testing processes and equipment required. By extending the insights from his foundational research in 2021, he aims to impact the broader field of in vitro diagnostics, proposing a new class of highly efficient artificial enzymes suitable for a wide range of diagnostic applications beyond just ELISA.

“Detection sensitivity is critical for diagnostics for significant diseases,” said Xia. “For the very early stages, the concentration of biomarkers may be very low and not detected by conventional ELISA. With our new technology, were aiming to substantially improve the sensitivity so we can detect even low concentrations of biomarkers in patient samples.”

“The ultimate goal we want to achieve is early detection of significant diseases like cancer and in the future, we also want to detect some other very challenging diseases like maybe even Alzheimer’s Disease,” Xia added.

Related Links:
UCF Department of Chemistry

Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Alcohol Testing Device
Dräger Alcotest 7000

Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more