Early-Pregnancy Urine Test Could Predict Preeclampsia
|
By LabMedica International staff writers Posted on 12 Dec 2022 |

Preeclampsia is a dangerous complication of pregnancy and one of the top three causes of maternal death worldwide. Characterized by high blood pressure late in pregnancy, it affects 3% to 5% of pregnancies in the U.S. and up to 8% of pregnancies worldwide. Preeclampsia can lead to eclampsia, an obstetric emergency linked to seizures, strokes, permanent organ damage and death. At present, preeclampsia can be diagnosed only in the second half of pregnancy, and the sole treatment is to deliver the baby, putting infants at risk from premature birth. Now, researchers have discovered biomarkers in the blood and urine of women with preeclampsia that could lead to a low-cost test to predict the condition months before a pregnant woman shows symptoms. Predictive testing would enable better pregnancy monitoring and the development of more effective treatments.
To figure out which biological signals could provide an early warning system for preeclampsia, researchers at Stanford Medicine (Stanford, CA, USA) collected biological samples from pregnant women who did and did not develop preeclampsia. They conducted highly detailed analyses of all the samples, measuring changes in as many biological signals as possible, then zeroing in on a small set of the most useful predictive signals. The research team collected biological samples at two or three points in pregnancy (early, mid and late) in 49 women, of whom 29 developed preeclampsia during their pregnancies and 20 did not. The participants were selected from a larger cohort of women who had donated biological samples for pregnancy research at Stanford Medicine.
For each time point, the participants gave blood, urine and vaginal swab samples. The samples were used to measure six types of biological signals: all cell-free RNA in blood plasma, a measure of which genes are active; all proteins in plasma; all metabolic products in plasma; all metabolic products in urine; all fat-like molecules in plasma; and all microbes/bacteria in vaginal swabs. The scientists also conducted measurements of all immune cells in plasma in a subset of 19 of the participants. Using the resulting thousands of measurements, as well as information about which participants developed preeclampsia and when in pregnancy each sample was collected, the scientists used machine learning to determine which biological signals best predicted who progressed to preeclampsia.
They aimed to identify a small set of signals detectable in the first 16 weeks of pregnancy that could form the basis for a simple, low-cost diagnostic test feasible to use in low-, middle- and high-income countries. To estimate the accuracy of the machine learning models, the researchers initially constructed the models with data from the discovery cohort, then confirmed the results by testing their performance on data from women in the validation cohort. A prediction model using a set of nine urine metabolites was highly accurate, the researchers found. These urine markers, in samples collected before week 16 of pregnancy, strongly predicted who later developed preeclampsia. The performance of the test was measured by a statistical standard used in machine learning known as area under the characteristic curve. An AUC of 1 for a test with two possible outcomes indicates perfect prediction, whereas an AUC of 0.5 indicates no predictive value, the same as the results obtained from a coin toss. For the urine markers, the AUC was 0.88 in the discovery cohort and 0.83 in the validation cohort, indicating high prediction capability.
Measuring the same set of urine metabolites in samples collected throughout pregnancy produced similar predictive power, with an AUC of 0.89 in the discovery cohort and 0.87 in the validation cohort. The researchers confirmed that their model had stronger predictive power than using only clinical features linked to a pregnant woman’s preeclampsia risk, such as chronic hypertension, high body mass index and carrying twins. A set of nine proteins measured in blood performed almost as strongly, with an AUC of 0.84. The researchers also created a predictive model that combined participants’ clinical features with urine metabolites, which enabled them to predict preeclampsia starting early in pregnancy with an AUC of 0.96. The clinical features in the combined model are data that are already collected as part of standard medical records, such as patients’ age, height, body mass index and pre-pregnancy hypertension.
“We used a number of cutting-edge technologies on Stanford University’s campus to analyze preeclampsia at an unprecedented level of biological detail,” said the study’s senior author Nima Aghaeepour, PhD, associate professor of pediatrics and of anesthesiology, perioperative and pain medicine. “We learned that a urine test fairly early on during pregnancy has a strong statistical power for predicting preeclampsia.”
Related Links:
Stanford Medicine
Latest Molecular Diagnostics News
- Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
- Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
- Two-in-One DNA Analysis Improves Diagnostic Accuracy While Saving Time and Costs
- “Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
- New Tool Maps Chromosome Shifts in Cancer Cells to Predict Tumor Evolution
- Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
- Newly-Identified Parkinson’s Biomarkers to Enable Early Diagnosis Via Blood Tests
- New Blood Test Could Detect Pancreatic Cancer at More Treatable Stage
- Liquid Biopsy Could Replace Surgical Biopsy for Diagnosing Primary Central Nervous Lymphoma
- New Tool Reveals Hidden Metabolic Weakness in Blood Cancers
- World's First Blood Test Distinguishes Between Benign and Cancerous Lung Nodules
- Rapid Test Uses Mobile Phone to Identify Severe Imported Malaria Within Minutes
- Gut Microbiome Signatures Predict Long-Term Outcomes in Acute Pancreatitis
- Blood Test Promises Faster Answers for Deadly Fungal Infections
- Blood Test Could Detect Infection Exposure History
- Urine-Based MRD Test Tracks Response to Bladder Cancer Surgery
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







