LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Biomarkers to Help Gauge Response of Melanoma Patients to Immune Checkpoint Therapy

By LabMedica International staff writers
Posted on 20 Sep 2022
Image: Immune checkpoint (Photo courtesy of The Wistar Institute)
Image: Immune checkpoint (Photo courtesy of The Wistar Institute)

A recent study identified biomarkers that demonstrate stable performance in predicting the response of melanoma patients to immune checkpoint inhibitor (ICI) therapy.

Since only a subset of melanoma patients respond to immunotherapy with checkpoint inhibitors, predictive biomarkers are critically needed to guide treatment decisions and develop approaches to the treatment of therapeutic resistance.

The Tumor Mutation Burden (TMB) is the only [U.S.] FDA-approved biomarker for melanoma. TMB is defined as the number of somatic mutations per megabase whereas mutational signatures are distinct mutational patterns of single base substitutions, double base substitutions, or small insertions and deletions in tumors. TMB has shown potential as a predictive biomarker with several applications, including associations reported between different TMB levels and patient response to immune checkpoint inhibitor (ICI) therapy in a variety of cancers. However, the mechanisms underlying TMB association with prolonged ICI survival are not entirely understood and may depend on numerous confounding factors.

Investigators at the The Wistar Institute (Philadelphia, PA, USA) sought to identify better ICI response biomarkers based on tumor mutations. Toward this end, they evaluated a variety of feature selection and classification methods and identified key mutated biological processes that provided improved predictive capability compared to the TMB.

Over the course of the study, the investigators worked with training and validation mutation and clinical datasets from metastatic melanoma patients treated with anti-PD1. For training, they used 144 melanoma patients’ samples, including somatic mutations and anti-PD1 response information. For validation, they used 68 melanoma patients’ samples with somatic mutations and relevant clinical data. To further test the models, they used an additional 38 anti-PD1-treated melanoma patients’ samples. For all datasets, responders were defined as patients with complete or partial response.

The top mutated processes identified by the study were involved in leukocyte and T-cell proliferation regulation. These markers demonstrated stable predictive performance across different data cohorts of melanoma patients treated with ICI. Identification of these mutated processes is expected to substantially improve prediction of response to ICI by melanoma patients over that obtainable from the TMB.

“This work aims to identify better and more biologically interpretable genomic predictors for immunotherapy responses,” said senior author Dr. Noam Auslander, assistant professor of molecular and cellular oncogenesis at the Wistar Institute. “We need better biomarkers to help select patients that are more likely to respond to ICI therapy and understand what factors can help to enhance responses and increase those numbers.”

The study was published in the September 19, 2022, online edition of the journal Nature Communications.

Related Links:
The Wistar Institute

Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Radial Immunodiffusion Assay
Radial Immunodifusion - C3 ID
Rapid Molecular Testing Device
FlashDetect Flash10

Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more