LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

First-Ever Blood Test Detects Parkinson’s Disease

By LabMedica International staff writers
Posted on 24 Jun 2022
Image: A new method reliably detects protein changes in blood that are typical of Parkinson`s disease (Photo courtesy of Pexels)
Image: A new method reliably detects protein changes in blood that are typical of Parkinson`s disease (Photo courtesy of Pexels)

Until now, the diagnosis of Parkinson's disease has been based primarily on typical movement disorders such as muscle stiffness, slower movements and shaking. However, the disease starts up to 20 years before it becomes noticeable as a result of these symptoms. To date, there have been neither blood parameters nor imaging examinations to produce a definite diagnosis, let alone early recognition. Scientists around the world are looking for reliable clinically applicable biomarkers for this chronic progressive brain disease. Now, researchers have developed a method that reliably detects protein changes in blood that are typical of Parkinson's disease.

A research team at the Faculty of Medicine at Kiel University (‎Schleswig-Holstein‎, Germany) has developed a biochemical blood-based test for the diagnosis of Parkinson's disease. In a study, the test was able to distinguish the 30 Parkinson’s patients from the 50 control individuals with a very high degree of sensitivity. However, it is still no known whether early stages of the diseases can also be detected and whether the test will work for diseases that are similar to Parkinson’s.

The new method is based on three steps. The first step was to isolate the vesicles of nerve cells in the blood sample. Vesicles are small blisters that are pinched off cells and contain the protein of the original cell. The second step was to look specifically for the protein that causes the disease in these isolated nerve cell vesicles. This is a changed form of α-synuclein. This pathogenic form of α-synuclein can be detected through structure-specific antibodies. The third and most significant step of the detection method involves reproducing these misfolded α-synuclein forms of Parkinson’s patients from vesicles taken from patients’ blood.

“We developed a biochemical blood-based test for the diagnosis of Parkinson's disease. With our procedure, we were able to distinguish the 30 Parkinson’s patients from the 50 control individuals with a very high degree of sensitivity,” said Dr. Annika Kluge from the Faculty of Medicine at Kiel University. “The results are really sensational. They form the basis on which a blood test for diagnosing Parkinson's disease can be developed.”

Related Links:
Kiel University 

Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Homocysteine Quality Control
Liquichek Homocysteine Control

Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more