LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

AI Tool Merges Patient Data with Blood Test Results to Detect Heart Failure

By LabMedica International staff writers
Posted on 20 Jun 2022
Image: AI can be better at spotting heart failure than current tests (Photo courtesy of Pexels)
Image: AI can be better at spotting heart failure than current tests (Photo courtesy of Pexels)

Acute heart failure is a life-threatening condition caused when the heart is suddenly unable to pump blood around the body. It affects millions of people and accounts for a large percentage of all unplanned hospital admissions. Diagnosis is difficult because symptoms, such as shortness of breath and leg swelling, occur in many other illnesses. Previous research has shown that patients who are diagnosed quickly benefit the most from treatment. Now, research suggests that using artificial intelligence (AI) can help diagnose acute heart failure with more accuracy than current blood tests alone.

The research conducted by The University of Edinburgh (Edinburgh, UK) found that using AI to combine patient data with results from a test for levels of a protein made by the heart could help doctors spot heart failure sooner and improve patient care. Researchers combined data from 10,369 patients with suspected acute heart failure to develop a tool - called CoDE-HF – to inform clinicians’ decisions. CoDE-HF uses AI to combine routinely collected patient information with results from a blood test for the heart protein NT-proBNP to produce an estimate of whether they suffered heart failure. The current recommended diagnosis method is to test to see if levels of NT-proBNP are below a certain cut-off value, but this is not widely used as levels can vary depending on an individual’s age, weight and other health conditions.

As well as spotting acute heart failure more accurately than heart protein blood tests on their own, CoDE-HF was especially precise in difficult to diagnose patient groups - such as older people and those with pre-existing medical conditions. The team is currently conducting further studies to understand how this decision-support tool will work in the hospital environment and influence patient outcomes.

“Heart failure can be a very challenging diagnosis to make in practice. We have shown that CoDE-HF, our decision-support tool, can substantially improve the accuracy of diagnosing heart failure compared to current blood tests,” said Dr. Ken Lee, cardiology specialist registrar and clinical lecturer at the University of Edinburgh.

“Our study demonstrates that the application of artificial intelligence in healthcare has major potential to help doctors deliver more personalized patient care,” added Dimitrios Doudesis, research fellow and data scientist at the University of Edinburgh.

“The application of artificial intelligence in decision-support tools as CoDE-HF to deliver more personalized care is particularly important given our ageing patient population who are living longer with more pre-existing medical conditions. We are currently conducting further studies to identify ways to implement CoDE-HF effectively in routine care,” stated Professor Nicholas Mills, British Heart Foundation professor of cardiology at the University of Edinburgh and consultant cardiologist.

Related Links:
The University of Edinburgh 

Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more