Fastest DNA Sequencing Technique Diagnoses Rare Genetic Diseases in Mere Hours
|
By LabMedica International staff writers Posted on 19 Jan 2022 |

A research effort has set the first Guinness World Record for the fastest DNA sequencing technique, which was used to sequence a human genome in just five hours and two minutes.
Researchers at Stanford Medicine (Stanford, CA, USA) along with their collaborators have developed a new ultra-rapid genome sequencing approach that was used to diagnose rare genetic diseases in an average of eight hours - a feat that’s nearly unheard of in standard clinical care.
Standard tests screen a patient’s blood for markers associated with disease, but they scan for only a handful of well-documented genes. Commercial labs, which often run these tests, are slow to update the molecules for which they screen, meaning it can take a long time before newly discovered disease-causing mutations are integrated into the test. And that can lead to missed diagnoses. Genome sequencing allows scientists to see a patient’s complete DNA makeup, which contains information about everything from eye color to inherited diseases. Genome sequencing is vital for diagnosing patients with diseases rooted in their DNA: Once doctors know the specific genetic mutation, they can tailor treatments accordingly. That's why rapid genome sequencing could be such a game-changer for patients ailing from rare genetic diseases. Scientists can scan a patient's entire genome for all gene variants suggested by the scientific literature, even if that variant was discovered only the day before. Furthermore, if a patient doesn't initially receive a genetic diagnosis, there's still hope that scientists will find a new gene variant linked to the patient's disease down the line.
The mega-sequencing approach devised by the Stanford researchers has redefined “rapid” for genetic diagnostics: Their fastest diagnosis was made in just over seven hours. Fast diagnoses mean patients may spend less time in critical care units, require fewer tests, recover more quickly and spend less on care. Notably, the faster sequencing does not sacrifice accuracy. Over the span of less than six months, the team enrolled and sequenced the genomes of 12 patients, five of whom received a genetic diagnosis from the sequencing information in about the time it takes to round out a day at the office. The team’s diagnostic rate, roughly 42%, is about 12% higher than the average rate for diagnosing mystery diseases.
In one of the cases, it took a snappy five hours and two minutes to sequence a patient’s genome, which set the first Guinness World Records title for fastest DNA sequencing technique. The time it took to sequence and diagnose that case was seven hours and 18 minutes, which is about twice as fast as the previous record for a genome sequencing-based diagnosis (14 hours). Fourteen hours is still an impressively quick turnaround, and the Stanford researchers now plan to offer a sub-10-hour turnaround to patients in intensive care units at hospitals.
Perhaps the most important feature of the diagnostic approach’s ability to quickly spot suspicious fragments of DNA is its use of something called long-read sequencing. Traditional genome-sequencing techniques chop the genome into small bits, spell out the exact order of the DNA base pairs in each chunk, then piece the whole thing back together using a standard human genome as a reference. But that approach doesn’t always capture the entirety of our genome, and the information it provides can sometimes omit variations in genes that point to a diagnosis. Long-read sequencing preserves long stretches of DNA composed of tens of thousands of base pairs, providing similar accuracy and more detail for scientists scouring the sequence for errors. Only recently have companies and researchers honed the accuracy of the long-read approach enough to rely on it for diagnostics. That and a drop from its once-hefty price tag created an opportunity for the Stanford researchers. This study is the first to demonstrate the feasibility of this type of long-read sequencing as a staple of diagnostic medicine.
“A few weeks is what most clinicians call ‘rapid’ when it comes to sequencing a patient’s genome and returning results,” said Euan Ashley, MB ChB, DPhil, professor of medicine, of genetics and of biomedical data science at Stanford. “It was just one of those amazing moments where the right people suddenly came together to achieve something amazing. It really felt like we were approaching a new frontier.”
Related Links:
Stanford Medicine
Latest Molecular Diagnostics News
- Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
- Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
- Two-in-One DNA Analysis Improves Diagnostic Accuracy While Saving Time and Costs
- “Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
- New Tool Maps Chromosome Shifts in Cancer Cells to Predict Tumor Evolution
- Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
- Newly-Identified Parkinson’s Biomarkers to Enable Early Diagnosis Via Blood Tests
- New Blood Test Could Detect Pancreatic Cancer at More Treatable Stage
- Liquid Biopsy Could Replace Surgical Biopsy for Diagnosing Primary Central Nervous Lymphoma
- New Tool Reveals Hidden Metabolic Weakness in Blood Cancers
- World's First Blood Test Distinguishes Between Benign and Cancerous Lung Nodules
- Rapid Test Uses Mobile Phone to Identify Severe Imported Malaria Within Minutes
- Gut Microbiome Signatures Predict Long-Term Outcomes in Acute Pancreatitis
- Blood Test Promises Faster Answers for Deadly Fungal Infections
- Blood Test Could Detect Infection Exposure History
- Urine-Based MRD Test Tracks Response to Bladder Cancer Surgery
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







