Endotoxemia Genetic Profile Reveals an Association with Thromboembolism and Stroke
By LabMedica International staff writers Posted on 09 Nov 2021 |

Image: The limulus amebocyte lysate (LAL) assay measures endotoxin activity (Photo courtesy of HyCult Biotechnology)
Microorganisms are part of the human body, and bacteria or their components often end up in the circulation. One such bacterial component is lipopolysaccharide (LPS), which is a toxin. High concentrations of LPS in the blood cause sepsis. Low LPS levels, known as endotoxemia, cause low-grade inflammation.
Translocation of LPS in the circulation, endotoxemia, can occur in the interface of host mucosal microbiota and the bloodstream (e.g., in the gut). Endotoxemia is associated with an increased risk of cardiometabolic disorders, including incident cardiovascular disease events, obesity, metabolic syndrome, and diabetes.
A team of medical scientists at the Helsinki University Hospital (Helsinki, Finland) performed a genome‐wide association study of serum lipopolysaccharide activity in 11,296 individuals from six different Finnish study cohorts. Endotoxin activities were determined with a limulus amebocyte lysate (LAL) assay on 1:5 diluted serum samples (HyCult Biotechnology b.v., Uden, the Netherlands), and the results were log transformed (natural logarithm) because of skewed distributions.
A subpopulation of 363 subjects was used to determine endotoxemia by mass spectrometry–based method and a commercially available Endolisa assay (Hyglos GmbH, Bernried, Germany) on 326 individuals. Cohorts were genotyped with various genotyping platforms and went through rigorous quality control. Imputation was performed using 1000 Genomes Project phase 3 reference genotypes.
The investigators reported that lipopolysaccharide activity had a genome‐wide significant association with 741 single‐nucleotide polymorphisms in five independent loci, which were mainly located at genes affecting the contact activation of the coagulation cascade and lipoprotein metabolism and explained 1.5% to 9.2% of the variability in lipopolysaccharide activity levels. The closest genes included KNG1, KLKB1, F12, SLC34A1, YPEL4, CLP1, ZDHHC5, SERPING1, CBX5, and LIPC. The genetic risk score of endotoxemia was associated with deep vein thrombosis, pulmonary embolism, pulmonary heart disease, and venous thromboembolism.
Jaakko Leskelä, DDS, the first author of the study, said, “As an entirely new find, we identified an apparent link between the human genome and the amount of bacterial toxins in the blood. Our findings connected endotoxemia particularly with blood clots, strokes and other diseases related to blood coagulation.”
The authors concluded that the biological activity of lipopolysaccharide in the circulation (i.e., endotoxemia) has a small but highly significant genetic component. Endotoxemia is associated with genetic variation in the contact activation pathway, vasoactivity, and lipoprotein metabolism, which play important roles in host defense, lipopolysaccharide neutralization, and thrombosis, and thereby thromboembolism and stroke. The study was published on October 20, 2021 in the Journal of the American Heart Association.
Related Links:
Helsinki University Hospital
HyCult Biotechnology
Hyglos GmbH
Translocation of LPS in the circulation, endotoxemia, can occur in the interface of host mucosal microbiota and the bloodstream (e.g., in the gut). Endotoxemia is associated with an increased risk of cardiometabolic disorders, including incident cardiovascular disease events, obesity, metabolic syndrome, and diabetes.
A team of medical scientists at the Helsinki University Hospital (Helsinki, Finland) performed a genome‐wide association study of serum lipopolysaccharide activity in 11,296 individuals from six different Finnish study cohorts. Endotoxin activities were determined with a limulus amebocyte lysate (LAL) assay on 1:5 diluted serum samples (HyCult Biotechnology b.v., Uden, the Netherlands), and the results were log transformed (natural logarithm) because of skewed distributions.
A subpopulation of 363 subjects was used to determine endotoxemia by mass spectrometry–based method and a commercially available Endolisa assay (Hyglos GmbH, Bernried, Germany) on 326 individuals. Cohorts were genotyped with various genotyping platforms and went through rigorous quality control. Imputation was performed using 1000 Genomes Project phase 3 reference genotypes.
The investigators reported that lipopolysaccharide activity had a genome‐wide significant association with 741 single‐nucleotide polymorphisms in five independent loci, which were mainly located at genes affecting the contact activation of the coagulation cascade and lipoprotein metabolism and explained 1.5% to 9.2% of the variability in lipopolysaccharide activity levels. The closest genes included KNG1, KLKB1, F12, SLC34A1, YPEL4, CLP1, ZDHHC5, SERPING1, CBX5, and LIPC. The genetic risk score of endotoxemia was associated with deep vein thrombosis, pulmonary embolism, pulmonary heart disease, and venous thromboembolism.
Jaakko Leskelä, DDS, the first author of the study, said, “As an entirely new find, we identified an apparent link between the human genome and the amount of bacterial toxins in the blood. Our findings connected endotoxemia particularly with blood clots, strokes and other diseases related to blood coagulation.”
The authors concluded that the biological activity of lipopolysaccharide in the circulation (i.e., endotoxemia) has a small but highly significant genetic component. Endotoxemia is associated with genetic variation in the contact activation pathway, vasoactivity, and lipoprotein metabolism, which play important roles in host defense, lipopolysaccharide neutralization, and thrombosis, and thereby thromboembolism and stroke. The study was published on October 20, 2021 in the Journal of the American Heart Association.
Related Links:
Helsinki University Hospital
HyCult Biotechnology
Hyglos GmbH
Latest Molecular Diagnostics News
- Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
- Novel Autoantibody Against DAGLA Discovered in Cerebellitis
- Blood Test Could Identify Patients at Risk for Severe Scleroderma
- Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
- Rapid Blood Test Identifies Pre-Symptomatic Patients with Parkinson’s Disease
- Blood Test for Early Alzheimer's Detection Achieves Over 90% Accuracy
- RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms
- First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
- Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
- Novel Point-of-Care Technology Delivers Accurate HIV Results in Minutes
- Blood Test Rules Out Future Dementia Risk
- D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
- New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
- Chemiluminescence Immunoassays Support Diagnosis of Alzheimer’s Disease
- Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury
- Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more
New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
"Liquid biopsy" technology, which relies on blood tests for early cancer detection and monitoring cancer burden in patients, has the potential to transform cancer care. However, detecting the mutational... Read more
"Metal Detector" Algorithm Hunts Down Vulnerable Tumors
Scientists have developed an algorithm capable of functioning as a "metal detector" to identify vulnerable tumors, marking a significant advancement in personalized cancer treatment. This breakthrough... Read more
Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
Pancreatic cancer is often asymptomatic in its early stages, making it difficult to detect until it has progressed. Consequently, only 15% of pancreatic cancers are diagnosed early enough to allow for... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more