Liquid Bioassay for Ultrasensitive Detection of Circulating HPV DNA
By LabMedica International staff writers Posted on 04 Oct 2021 |

Image: The HPV-Seq test is an ultra-sensitive liquid biopsy solution for the identification and quantification of circulating HPV 16 and HPV 18 DNA in patients with cancers caused by HPV infection (Photo courtesy of Sysmex Inostics)
A recent paper concluded that for cancers caused by the human papillomavirus (HPV), the HPV-seq technique was a promising ultrasensitive approach for detection and analysis of circulating tumor DNA (ctDNA).
HPV DNA offers a convenient ctDNA marker for HPV-associated cancers, but current methods such as digital PCR (dPCR) provide insufficient accuracy for clinical applications in patients with low-disease burden. In this light, investigators at Princess Margaret Cancer Centre (Toronto, Canada) asked whether a next-generation sequencing approach (HPV-seq) could provide quantitative and qualitative assessment of HPV ctDNA in low-disease-burden settings.
The classical PCR test carries out one reaction per single sample. The digital PCR (dPCR) method also carries out a single reaction within a sample, however the sample is separated into a large number of partitions and the reaction is carried out in each partition individually. This separation allows a more reliable collection and sensitive measurement of nucleic acid amounts. The dPCR method has been demonstrated as useful for studying variations in gene sequences - such as copy number variants and point mutations - and it is routinely used for clonal amplification of samples for next-generation sequencing.
The HPV-seq test is an ultra-sensitive liquid biopsy approach for the identification and quantification of circulating HPV 16 and HPV 18 DNA in patients with cancers caused by HPV infection, including cervical cancer, anal squamous cell carcinoma, and head and neck squamous cell cancer. HPV-seq detects cell-free HPV DNA across a large dynamic range and demonstrates accurate quantification even when few copies are present, enabling high-resolution molecular monitoring.
For the current study, the investigators conducted pre-clinical technical validation studies on HPV-seq and applied it retrospectively to a prospective multicenter cohort of locally-advanced cervix cancer patients and a cohort of oropharynx cancer patients. HPV-seq results were compared with those obtained by dPCR.
Results revealed that HPV-seq achieved reproducible detection of circulating HPV DNA at levels that were up to 20-fold lower than those detectable by dPCR. Detectable HPV ctDNA at end-of-treatment was associated with inferior progression free survival with 100% sensitivity and 67% specificity for recurrence. Accurate HPV genotyping was successful from 100% of the pre-treatment samples.
"Increasingly, as clinicians we are focused on precision medicine and making sure we are not over-treating people while still curing them. That is a very difficult balance to strike," said senior author Dr. Scott Bratman, assistant professor of radiation oncology and medical biophysics at Princess Margaret Cancer Centre. "We are really at the cusp of a revolution from a technology, clinical implementation, and standard of care standpoint, where five to 10 years from now we will not be treating everybody with the same dose of radiation and chemotherapy, and then waiting months to see if the treatment was effective. I am confident we will be giving much more tailored doses. Patients who need more treatment will then be able to continue on, or different treatments can be added. We can spare the vast majority of patients who will not need those interventions and provide them with a greater quality of life once they are cured of the cancer."
The HVP DNA bioassay paper was published in the September 27, 2021, online edition of the journal Clinical Cancer Research.
Related Links:
Princess Margaret Cancer Centre
HPV DNA offers a convenient ctDNA marker for HPV-associated cancers, but current methods such as digital PCR (dPCR) provide insufficient accuracy for clinical applications in patients with low-disease burden. In this light, investigators at Princess Margaret Cancer Centre (Toronto, Canada) asked whether a next-generation sequencing approach (HPV-seq) could provide quantitative and qualitative assessment of HPV ctDNA in low-disease-burden settings.
The classical PCR test carries out one reaction per single sample. The digital PCR (dPCR) method also carries out a single reaction within a sample, however the sample is separated into a large number of partitions and the reaction is carried out in each partition individually. This separation allows a more reliable collection and sensitive measurement of nucleic acid amounts. The dPCR method has been demonstrated as useful for studying variations in gene sequences - such as copy number variants and point mutations - and it is routinely used for clonal amplification of samples for next-generation sequencing.
The HPV-seq test is an ultra-sensitive liquid biopsy approach for the identification and quantification of circulating HPV 16 and HPV 18 DNA in patients with cancers caused by HPV infection, including cervical cancer, anal squamous cell carcinoma, and head and neck squamous cell cancer. HPV-seq detects cell-free HPV DNA across a large dynamic range and demonstrates accurate quantification even when few copies are present, enabling high-resolution molecular monitoring.
For the current study, the investigators conducted pre-clinical technical validation studies on HPV-seq and applied it retrospectively to a prospective multicenter cohort of locally-advanced cervix cancer patients and a cohort of oropharynx cancer patients. HPV-seq results were compared with those obtained by dPCR.
Results revealed that HPV-seq achieved reproducible detection of circulating HPV DNA at levels that were up to 20-fold lower than those detectable by dPCR. Detectable HPV ctDNA at end-of-treatment was associated with inferior progression free survival with 100% sensitivity and 67% specificity for recurrence. Accurate HPV genotyping was successful from 100% of the pre-treatment samples.
"Increasingly, as clinicians we are focused on precision medicine and making sure we are not over-treating people while still curing them. That is a very difficult balance to strike," said senior author Dr. Scott Bratman, assistant professor of radiation oncology and medical biophysics at Princess Margaret Cancer Centre. "We are really at the cusp of a revolution from a technology, clinical implementation, and standard of care standpoint, where five to 10 years from now we will not be treating everybody with the same dose of radiation and chemotherapy, and then waiting months to see if the treatment was effective. I am confident we will be giving much more tailored doses. Patients who need more treatment will then be able to continue on, or different treatments can be added. We can spare the vast majority of patients who will not need those interventions and provide them with a greater quality of life once they are cured of the cancer."
The HVP DNA bioassay paper was published in the September 27, 2021, online edition of the journal Clinical Cancer Research.
Related Links:
Princess Margaret Cancer Centre
Latest Molecular Diagnostics News
- Novel Point-of-Care Technology Delivers Accurate HIV Results in Minutes
- Blood Test Rules Out Future Dementia Risk
- D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
- New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
- Chemiluminescence Immunoassays Support Diagnosis of Alzheimer’s Disease
- Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury
- Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression
- Simple DNA PCR-Based Lab Test to Enable Personalized Treatment of Bacterial Vaginosis
- Rapid Diagnostic Test to Halt Mother-To-Child Hepatitis B Transmission
- Simple Urine Test Could Help Patients Avoid Invasive Scans for Kidney Cancer
- New Bowel Cancer Blood Test to Improve Early Detection
- Refined Test Improves Parkinson’s Disease Diagnosis
- New Method Rapidly Diagnoses CVD Risk Via Molecular Blood Screening
- Blood Test Shows Promise for Early Detection of Dementia
- CRISPR-Based Diagnostic Test Detects Pathogens in Blood Without Amplification
- Portable Blood-Based Device Detects Colon Cancer
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read more
Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read moreMicrobiology
view channel
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read morePathology
view channel
AI Model Predicts Patient Response to Bladder Cancer Treatment
Each year in the United States, around 81,000 new cases of bladder cancer are diagnosed, leading to approximately 17,000 deaths annually. Muscle-invasive bladder cancer (MIBC) is a severe form of bladder... Read more
New Laser-Based Method to Accelerate Cancer Diagnosis
Researchers have developed a method to improve cancer diagnostics and other diseases. Collagen, a key structural protein, plays various roles in cell activity. A novel multidisciplinary study published... Read more
New AI Model Predicts Gene Variants’ Effects on Specific Diseases
In recent years, artificial intelligence (AI) has greatly enhanced our ability to identify a vast number of genetic variants in increasingly larger populations. However, up to half of these variants are... Read more
Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
Coeliac disease is an autoimmune disorder triggered by the consumption of gluten, causing symptoms such as stomach cramps, diarrhea, skin rashes, weight loss, fatigue, and anemia. Due to the wide variation... Read moreTechnology
view channel
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read more
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
New Collaboration to Advance Microbial Identification for Infectious Disease Diagnostics
With the rise of global pandemics, antimicrobial resistance, and emerging pathogens, healthcare systems worldwide are increasingly dependent on advanced diagnostic tools to guide clinical decisions.... Read more