Placental MicroRNAs Diagnosis Pregnancy Progress and Fetal Distress
By LabMedica International staff writers Posted on 28 Sep 2021 |

Image: Schematic view of the placenta (Photo courtesy of Wikimedia Commons)
Analysis of placental microRNAs (miRNAs), which also circulate in the maternal blood, represents a significant improvement to currently used pregnancy screening tools, allowing assessment of placental health, and therefore fetal health, in real time.
The critical role of the placenta in successful pregnancy is clear, and there is also evidence linking developmental programming of chronic adult disease such as heart disease, diabetes, and obesity with the placental phenotype in utero. However, there are currently no non-invasive tests to determine which women are likely to develop pregnancy complications in routine use, nor is there a comprehensive reference set of miRNA expression during early pregnancy that can be used for development of pregnancy health biomarkers.
MiRNAs comprise a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation. In addition to miRNAs playing an essential role in tumor development, dysregulation of certain miRNAs has been associated with many different diseases, such as dementia and cardiovascular conditions.
Investigators at Flinders University (Adelaide, Australia) generated miRNA profiles using 96 placentas from presumed normal pregnancies, across early gestation, in combination with matched profiles from maternal plasma. Placenta samples ranged from six to 23 weeks’ gestation, a time period that included placenta from the early, relatively low but physiological (six to10 weeks’ gestation) oxygen environment, and later, physiologically normal oxygen environment (11 to 23 weeks’ gestation).
The results identified 637 miRNAs with expression in 86 samples. Of these, 374 were differentially expressed (DE) miRNAs between placentas from six to10 weeks’ versus 11 to 23 weeks’ gestation. Proportional change in expression of placenta-specific miRNA clusters was reflected in maternal plasma. In particular, the amount of a cluster of miRNAs from Chromosome 19, which are only made by the placenta and are present in maternal blood, changed in response to the initiation of maternal blood flow into the placenta after 10 weeks of gestation.
"Our group has had a long-term interest in developing screening tests to identify pregnant women early in pregnancy who are at risk of pregnancy complications," said senior author Dr. Claire Roberts, professor of medicine and public health at Flinders University. "The earlier we can identify those at risk the earlier we can implement extra clinical monitoring and prevention strategies."
The placenta miRNA study was published in the August 19, 2021, online edition of the journal RNA Biology.
Related Links:
Flinders University
The critical role of the placenta in successful pregnancy is clear, and there is also evidence linking developmental programming of chronic adult disease such as heart disease, diabetes, and obesity with the placental phenotype in utero. However, there are currently no non-invasive tests to determine which women are likely to develop pregnancy complications in routine use, nor is there a comprehensive reference set of miRNA expression during early pregnancy that can be used for development of pregnancy health biomarkers.
MiRNAs comprise a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation. In addition to miRNAs playing an essential role in tumor development, dysregulation of certain miRNAs has been associated with many different diseases, such as dementia and cardiovascular conditions.
Investigators at Flinders University (Adelaide, Australia) generated miRNA profiles using 96 placentas from presumed normal pregnancies, across early gestation, in combination with matched profiles from maternal plasma. Placenta samples ranged from six to 23 weeks’ gestation, a time period that included placenta from the early, relatively low but physiological (six to10 weeks’ gestation) oxygen environment, and later, physiologically normal oxygen environment (11 to 23 weeks’ gestation).
The results identified 637 miRNAs with expression in 86 samples. Of these, 374 were differentially expressed (DE) miRNAs between placentas from six to10 weeks’ versus 11 to 23 weeks’ gestation. Proportional change in expression of placenta-specific miRNA clusters was reflected in maternal plasma. In particular, the amount of a cluster of miRNAs from Chromosome 19, which are only made by the placenta and are present in maternal blood, changed in response to the initiation of maternal blood flow into the placenta after 10 weeks of gestation.
"Our group has had a long-term interest in developing screening tests to identify pregnant women early in pregnancy who are at risk of pregnancy complications," said senior author Dr. Claire Roberts, professor of medicine and public health at Flinders University. "The earlier we can identify those at risk the earlier we can implement extra clinical monitoring and prevention strategies."
The placenta miRNA study was published in the August 19, 2021, online edition of the journal RNA Biology.
Related Links:
Flinders University
Latest Molecular Diagnostics News
- Blood Test Could Predict Relapse of Autoimmune Blood Vessel Disease
- First-of-its-Kind Blood Test Detects Trauma-Related Diseases
- Key Gene Identified in Common Heart Disease Unlocks Life-Saving Diagnostic Potential
- Cheap Cell-Free DNA Based Test Accurately Predicts Preterm Birth
- RNA Blood Test Detects Cancers and Resistance to Treatment
- IL-6 Outperforms Traditional Tests for Early Sepsis Detection
- Simple Blood Test Improves Heart Attack and Stroke Risk Prediction
- Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
- Novel Autoantibody Against DAGLA Discovered in Cerebellitis
- Blood Test Could Identify Patients at Risk for Severe Scleroderma
- Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
- Rapid Blood Test Identifies Pre-Symptomatic Patients with Parkinson’s Disease
- Blood Test for Early Alzheimer's Detection Achieves Over 90% Accuracy
- RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms
- First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
- Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more
World’s First AI Model for Thyroid Cancer Diagnosis Achieves Over 90% Accuracy
Thyroid cancer is one of the most common cancers worldwide, and its precise management typically relies on two primary systems: (1) the 8th edition of the American Joint Committee on Cancer (AJCC) or ... Read more
Breakthrough Diagnostic Approach to Significantly Improve TB Detection
Tuberculosis (TB) remains the deadliest infectious disease globally, with 10.8 million new cases and 1.25 million deaths reported in 2023. Early detection through effective screening is crucial in identifying... Read more
Rapid, Ultra-Sensitive, PCR-Free Detection Method Makes Genetic Analysis More Accessible
Genetic testing has been an important method for detecting infectious diseases, diagnosing early-stage cancer, ensuring food safety, and analyzing environmental DNA. For a long time, polymerase chain reaction... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more