We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Genomic Test Aids in Determining Prostate Cancer Treatment Options

By LabMedica International staff writers
Posted on 06 Aug 2021
Print article
Real-world data support the clinical utility of the Decipher Prostate Biopsy Genomic Test for determining prostate cancer treatment options (Photo courtesy of Clinical Lab Products)
Real-world data support the clinical utility of the Decipher Prostate Biopsy Genomic Test for determining prostate cancer treatment options (Photo courtesy of Clinical Lab Products)
A clinical study has confirmed that a commercially available genomic test was useful for identifying which prostate cancer patients would benefit from more immediate and aggressive treatment.

Treatment of newly identified prostate cancer patients requires choosing between a watch-and-wait approach, known as active surveillance, or proceeding with surgery or radiation treatment.

Investigators at the University of Michigan (Ann Arbor, USA) assessed the clinical utility of the Veracyte (San Francisco, CA, USA) Decipher Biopsy test for identify patients who are at high risk of cancer progression and require a more aggressive treatment approach.

The Decipher Prostate Genomic Test was developed from a large cohort of metastatic and non-metastatic prostate cancer patients treated at the Mayo Clinic. This whole transcriptome test utilizes 22 coding and non-coding biomarkers that span seven cancer pathways to provide a more accurate, independent prediction of risk.

In the current study, 855 patients underwent Decipher Biopsy testing between February 2015 and October 2019. Cumulative incidence curves for time to treatment (TTT) and time to failure (TTF) were constructed using Kaplan–Meier estimates. Multivariable Cox proportional hazard models were used to evaluate the independent association of high-risk Decipher scores with the conversion from active surveillance (AS) to radical therapy and treatment failure.

Results revealed that of the 855 men, 264 proceeded to AS (31%), and 454 (53%) received radical therapy. In men electing AS, after adjusting for age, PSA (prostate specific antigen), prostate volume, body mass index, and percent positive cores, a high-risk Decipher score was independently associated with shorter TTT. Similarly, in patients that underwent radical therapy, a high-risk Decipher score was independently associated with TTF. Furthermore, following removal of the prostate gland, high Decipher scores were associated with shorter time until recurrence of elevated PSA levels or when patients were put on anti-androgen therapy.

"Men with a high Decipher score who were placed on active surveillance had a shorter time before active treatment was needed," said first author Dr. Randy Vince, Jr., an oncology fellow at the University of Michigan. "We have long needed better tools to reduce the uncertainty of these initial treatment decisions."

Results of the Decipher clinical study were published in the July 20, 2021, online edition of the journal Prostate Cancer and Prostatic Diseases.

Related Links:

University of Michigan
Veracyte


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Centrifuge
Hematocrit Centrifuge 7511M4
New
Coagulation Analyzer
CS-2400

Print article

Channels

Clinical Chemistry

view channel
Image: The research team has developed the uCR-Chip device to enhance kidney function testing (Photo courtesy of University of Manitoba)

Low-Cost Portable Screening Test to Transform Kidney Disease Detection

Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.