Serum Biomarkers Enable Tracing the Progress of COVID-19 Infections
By LabMedica International staff writers Posted on 20 Jul 2021 |

Image: Artist’s rendition of the SARS-CoV-2 virus, which causes COVID-19 (Photo courtesy of Pixabay)
A team of Spanish investigators has shown that levels of angiotensin-converting enzyme 2 and various truncated versions of this protein in the blood could be used as biomarkers for following the progress of COVID-19 infection in hospitalized patients.
Useful biomarkers are needed to assess the severity and prognosis of COVID-19 disease, caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2) virus. Toward this end, investigators associated with the Spanish National Research Council (Madrid, Spain) examined the levels of various plasma species of the SARS-CoV-2 host receptor, the angiotensin-converting enzyme 2 (ACE2), in patients at different phases of the infection.
ACE2 is a ubiquitous glycoprotein abundantly expressed in humans, particularly in the lung epithelia and oral and nasal mucosa, providing a possible entry route for SARS-CoVs. The human ACE2 gene is localized on the X chromosome and encodes an 805 amino acid-long type I transmembrane glycoprotein with an apparent molecular mass of about 100-130 kiloDaltons. Plasma ACE2 levels have been found to be increased in several inflammatory processes, including renal and cardiovascular disease, as well in diabetes and several others pathological conditions, including acute lung injury.
In the current study, the investigators aimed to characterize and to determine the levels of ACE2 in plasma using immunoprecipitation and western blotting, a technique that allows for both the separation and quantification of individual ACE2 species. They sought to assess whether some of these species could constitute a biomarker of disease in patients infected by SARS-CoV-2. They also analyzed whether plasma levels of the ACE2 species were differentially affected in COVID-19 compared with non-disease subjects, and if levels were restored in patients after a recovery period. The levels of plasma ACE2 species were also analyzed in patients infected by influenza A virus, which uses a different host receptor but can cause similar complications to those of SARS-CoV-2 infection.
The test group comprised 24 women and 35 men, with a mean age of 64 years, who tested positive for COVID-19 by a positive reverse transcription polymerase chain reaction (RT-PCR) assay. All were hospitalized seven to nine days after symptom onset. Of these, 48 SARS-CoV-2 infected patients suffered a moderate presentation of COVID-19, and 11 were considered severe. Two additional groups were also analyzed, one of 17 participants (nine women and eight men), which included individuals aged 34 to 85 years with influenza A virus pneumonia. The other group consisted of 26 disease-free controls (14 women and 12 men) aged 34-85 years.
Results revealed that patients with acute phase COVID-19 had significantly reduced plasma levels of the full-length ACE2 protein compared to non-infected controls. In addition, the plasma levels of a lower molecular mass (70 kiloDalton) truncated ACE2 fragment were increased. These abnormal levels of ACE2 and truncated ACE2 returned to normal after the patients' recovery, suggesting that both forms of ACE2 present in plasma could be used as biomarkers of the progression of coronavirus infection. Furthermore, truncated ACE2 levels served to discriminate between patients infected with SARS-CoV-2 and those infected with influenza A virus.
"Our approach to this research line was the possibility that soluble ACE2 protein can serve as a read-out during infection with COVID-19. This hypothesis originates from our expertise in Alzheimer's disease. In this work we have studied the plasma levels of the coronavirus receptor, the ACE2 protein, and we have been able to determine that there are different forms of the protein in plasma, and that part of the soluble ACE2 are proteolytic fragments of the ACE2 receptor, generated subsequently to interaction with the virus. The full-length protein is also found in plasma, which provides information about tissue affection during infection," said senior author Dr. Javier Sáez-Valero, principle investigator in molecular neurobiology at the UMH-CSIC Neurosciences Institute in Alicante (Spain).
The study was published in the June 30, 2021, online edition of the FASEB Journal.
Related Links:
Spanish National Research Council
UMH-CSIC Neurosciences Institute in Alicante
Useful biomarkers are needed to assess the severity and prognosis of COVID-19 disease, caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2) virus. Toward this end, investigators associated with the Spanish National Research Council (Madrid, Spain) examined the levels of various plasma species of the SARS-CoV-2 host receptor, the angiotensin-converting enzyme 2 (ACE2), in patients at different phases of the infection.
ACE2 is a ubiquitous glycoprotein abundantly expressed in humans, particularly in the lung epithelia and oral and nasal mucosa, providing a possible entry route for SARS-CoVs. The human ACE2 gene is localized on the X chromosome and encodes an 805 amino acid-long type I transmembrane glycoprotein with an apparent molecular mass of about 100-130 kiloDaltons. Plasma ACE2 levels have been found to be increased in several inflammatory processes, including renal and cardiovascular disease, as well in diabetes and several others pathological conditions, including acute lung injury.
In the current study, the investigators aimed to characterize and to determine the levels of ACE2 in plasma using immunoprecipitation and western blotting, a technique that allows for both the separation and quantification of individual ACE2 species. They sought to assess whether some of these species could constitute a biomarker of disease in patients infected by SARS-CoV-2. They also analyzed whether plasma levels of the ACE2 species were differentially affected in COVID-19 compared with non-disease subjects, and if levels were restored in patients after a recovery period. The levels of plasma ACE2 species were also analyzed in patients infected by influenza A virus, which uses a different host receptor but can cause similar complications to those of SARS-CoV-2 infection.
The test group comprised 24 women and 35 men, with a mean age of 64 years, who tested positive for COVID-19 by a positive reverse transcription polymerase chain reaction (RT-PCR) assay. All were hospitalized seven to nine days after symptom onset. Of these, 48 SARS-CoV-2 infected patients suffered a moderate presentation of COVID-19, and 11 were considered severe. Two additional groups were also analyzed, one of 17 participants (nine women and eight men), which included individuals aged 34 to 85 years with influenza A virus pneumonia. The other group consisted of 26 disease-free controls (14 women and 12 men) aged 34-85 years.
Results revealed that patients with acute phase COVID-19 had significantly reduced plasma levels of the full-length ACE2 protein compared to non-infected controls. In addition, the plasma levels of a lower molecular mass (70 kiloDalton) truncated ACE2 fragment were increased. These abnormal levels of ACE2 and truncated ACE2 returned to normal after the patients' recovery, suggesting that both forms of ACE2 present in plasma could be used as biomarkers of the progression of coronavirus infection. Furthermore, truncated ACE2 levels served to discriminate between patients infected with SARS-CoV-2 and those infected with influenza A virus.
"Our approach to this research line was the possibility that soluble ACE2 protein can serve as a read-out during infection with COVID-19. This hypothesis originates from our expertise in Alzheimer's disease. In this work we have studied the plasma levels of the coronavirus receptor, the ACE2 protein, and we have been able to determine that there are different forms of the protein in plasma, and that part of the soluble ACE2 are proteolytic fragments of the ACE2 receptor, generated subsequently to interaction with the virus. The full-length protein is also found in plasma, which provides information about tissue affection during infection," said senior author Dr. Javier Sáez-Valero, principle investigator in molecular neurobiology at the UMH-CSIC Neurosciences Institute in Alicante (Spain).
The study was published in the June 30, 2021, online edition of the FASEB Journal.
Related Links:
Spanish National Research Council
UMH-CSIC Neurosciences Institute in Alicante
Latest Molecular Diagnostics News
- D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
- New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
- Chemiluminescence Immunoassays Support Diagnosis of Alzheimer’s Disease
- Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury
- Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression
- Simple DNA PCR-Based Lab Test to Enable Personalized Treatment of Bacterial Vaginosis
- Rapid Diagnostic Test to Halt Mother-To-Child Hepatitis B Transmission
- Simple Urine Test Could Help Patients Avoid Invasive Scans for Kidney Cancer
- New Bowel Cancer Blood Test to Improve Early Detection
- Refined Test Improves Parkinson’s Disease Diagnosis
- New Method Rapidly Diagnoses CVD Risk Via Molecular Blood Screening
- Blood Test Shows Promise for Early Detection of Dementia
- CRISPR-Based Diagnostic Test Detects Pathogens in Blood Without Amplification
- Portable Blood-Based Device Detects Colon Cancer
- New DNA Test Diagnoses Bacterial Infections Faster and More Accurately
- Innovative Bio-Detection Platform Improves Early Cancer Screening and Monitoring
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read moreCerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
In recent years, cancer immunotherapy has emerged as a promising approach where the patient's immune system is harnessed to fight cancer. One form of immunotherapy, called CAR-T-cell therapy, involves... Read more
New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
Preterm infants are particularly vulnerable due to their organs still undergoing development, which can lead to difficulties in breathing, eating, and regulating body temperature. This is especially true... Read more
Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read moreMicrobiology
view channel
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read morePathology
view channel
AI Model Predicts Patient Response to Bladder Cancer Treatment
Each year in the United States, around 81,000 new cases of bladder cancer are diagnosed, leading to approximately 17,000 deaths annually. Muscle-invasive bladder cancer (MIBC) is a severe form of bladder... Read more
New Laser-Based Method to Accelerate Cancer Diagnosis
Researchers have developed a method to improve cancer diagnostics and other diseases. Collagen, a key structural protein, plays various roles in cell activity. A novel multidisciplinary study published... Read more
New AI Model Predicts Gene Variants’ Effects on Specific Diseases
In recent years, artificial intelligence (AI) has greatly enhanced our ability to identify a vast number of genetic variants in increasingly larger populations. However, up to half of these variants are... Read more
Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
Coeliac disease is an autoimmune disorder triggered by the consumption of gluten, causing symptoms such as stomach cramps, diarrhea, skin rashes, weight loss, fatigue, and anemia. Due to the wide variation... Read moreTechnology
view channel
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Tecan Acquires ELISA Immunoassay Assets from Revvity's Cisbio Bioassays
Tecan Group (Männedorf, Switzerland) has entered into an agreement to acquire certain assets relating to key ELISA immunoassay products from Cisbio Bioassays SAS (Codolet, France), a subsidiary of the... Read more