Metabolomic Analytical Approach Identifies Multiple Neonatal Errors of Metabolism Disorders
|
By LabMedica International staff writers Posted on 19 Jul 2021 |

Image: General schema showing the relationships of the genome, transcriptome, proteome, and metabolome (the domain of clinical metabolomics) (Photo courtesy of Wikimedia Commons)
A recent paper demonstrated that an untargeted metabolomics analytical approach could identify many more neonatal disorders caused by inborn errors of metabolism (IEM) than could be found by traditional methods.
With expanded newborn screening becoming increasingly available, a broader approach to primary screening for IEMs is needed. In this regard, investigators at Baylor College of Medicine (Houston, TX, USA) examined whether untargeted metabolomic profiling could significantly increase the diagnostic rate of screening for IEMs compared with the traditional metabolic screening approach. Thus, the traditional trio testing of plasma amino acids, plasma acylcarnitine profiling, and urine organic acids was contrasted with advanced liquid chromatography–coupled mass spectrometry analysis of metabolites.
The clinical metabolomics approach is capable of detecting multiple metabolites with varying chemical properties in a single test for the global analysis of perturbations in biochemical pathways that would otherwise require multiple targeted tests. Using this approach, small molecules ranging from 75-1000 Daltons were extracted from plasma derived from an EDTA whole blood sample using an 80% methanol solution containing four extraction efficiency standards. The clarified supernatant solution was analyzed by one of two different liquid chromatography–coupled mass spectrometry configurations, depending on the date the sample was received in the laboratory.
For this study, data was generated from 4464 clinical samples received from 1483 unrelated families that had been referred for trio testing of plasma amino acids, plasma acylcarnitine profiling, and urine organic acids and from 2000 consecutive plasma samples from 1807 unrelated families received for clinical metabolomic screening.
Results revealed that of 1483 cases screened by the traditional approach, 912 patients (61.5%) were male and 1465 (98.8%) were pediatric. A total of 19 families were identified with IEMs, resulting in a 1.3% diagnostic rate. A total of 14 IEMs were detected, including three conditions not included in the Recommended Uniform Screening Panel for NBS (newborn screening). Of the 1807 unrelated families undergoing plasma metabolomic profiling, 1059 patients (58.6%) were male, and 1665 (92.1%) were pediatric. Screening identified 128 unique cases with IEMs, giving an overall diagnostic rate of 7.1%. In total, 70 different metabolic conditions were identified, including 49 conditions not presently included on the Recommended Uniform Screening Panel for NBS.
Overall, clinical metabolomics supported diagnosis in 7.1% of cases, providing an approximately six-fold higher diagnostic rate in screening for IEMs and identifying more disorders and more disease types compared with the traditional screening approach.
"Currently, newborn screening is conducted in every infant born in the U.S. to check for serious but rare health conditions at birth. Screening includes blood, hearing, and heart tests," said senior author Dr. Sarah Elsea, professor of molecular and human genetics at Baylor College of Medicine. "While newborn screening in general has improved in the last 10 years, clinically screening for inborn errors of metabolism has not changed substantially in the last 40 to 50 years."
"We developed a clinical test - untargeted metabolomics profiling - that looks at a broader range of metabolic compounds in the blood, therefore screening for many more disorders than the currently used approach," said Dr. Elsea. "In the current study, we compared the standard approach and untargeted metabolomics on their effectiveness identifying metabolic conditions. We are finding individuals with milder forms of a disease are more common in our populations than those with severe forms. Our approach has been quite successful identifying seizure disorders, movement disorders, and autism spectrum disorders. Our analyses have taught us to open our minds to a much greater spectrum of disease, allowing us to improve early diagnosis."
The clinical metabolomics approach for diagnosis of IEMs was published in the July 12, 2021, online edition of the journal JAMA Network Open.
Related Links:
Baylor College of Medicine
With expanded newborn screening becoming increasingly available, a broader approach to primary screening for IEMs is needed. In this regard, investigators at Baylor College of Medicine (Houston, TX, USA) examined whether untargeted metabolomic profiling could significantly increase the diagnostic rate of screening for IEMs compared with the traditional metabolic screening approach. Thus, the traditional trio testing of plasma amino acids, plasma acylcarnitine profiling, and urine organic acids was contrasted with advanced liquid chromatography–coupled mass spectrometry analysis of metabolites.
The clinical metabolomics approach is capable of detecting multiple metabolites with varying chemical properties in a single test for the global analysis of perturbations in biochemical pathways that would otherwise require multiple targeted tests. Using this approach, small molecules ranging from 75-1000 Daltons were extracted from plasma derived from an EDTA whole blood sample using an 80% methanol solution containing four extraction efficiency standards. The clarified supernatant solution was analyzed by one of two different liquid chromatography–coupled mass spectrometry configurations, depending on the date the sample was received in the laboratory.
For this study, data was generated from 4464 clinical samples received from 1483 unrelated families that had been referred for trio testing of plasma amino acids, plasma acylcarnitine profiling, and urine organic acids and from 2000 consecutive plasma samples from 1807 unrelated families received for clinical metabolomic screening.
Results revealed that of 1483 cases screened by the traditional approach, 912 patients (61.5%) were male and 1465 (98.8%) were pediatric. A total of 19 families were identified with IEMs, resulting in a 1.3% diagnostic rate. A total of 14 IEMs were detected, including three conditions not included in the Recommended Uniform Screening Panel for NBS (newborn screening). Of the 1807 unrelated families undergoing plasma metabolomic profiling, 1059 patients (58.6%) were male, and 1665 (92.1%) were pediatric. Screening identified 128 unique cases with IEMs, giving an overall diagnostic rate of 7.1%. In total, 70 different metabolic conditions were identified, including 49 conditions not presently included on the Recommended Uniform Screening Panel for NBS.
Overall, clinical metabolomics supported diagnosis in 7.1% of cases, providing an approximately six-fold higher diagnostic rate in screening for IEMs and identifying more disorders and more disease types compared with the traditional screening approach.
"Currently, newborn screening is conducted in every infant born in the U.S. to check for serious but rare health conditions at birth. Screening includes blood, hearing, and heart tests," said senior author Dr. Sarah Elsea, professor of molecular and human genetics at Baylor College of Medicine. "While newborn screening in general has improved in the last 10 years, clinically screening for inborn errors of metabolism has not changed substantially in the last 40 to 50 years."
"We developed a clinical test - untargeted metabolomics profiling - that looks at a broader range of metabolic compounds in the blood, therefore screening for many more disorders than the currently used approach," said Dr. Elsea. "In the current study, we compared the standard approach and untargeted metabolomics on their effectiveness identifying metabolic conditions. We are finding individuals with milder forms of a disease are more common in our populations than those with severe forms. Our approach has been quite successful identifying seizure disorders, movement disorders, and autism spectrum disorders. Our analyses have taught us to open our minds to a much greater spectrum of disease, allowing us to improve early diagnosis."
The clinical metabolomics approach for diagnosis of IEMs was published in the July 12, 2021, online edition of the journal JAMA Network Open.
Related Links:
Baylor College of Medicine
Latest Molecular Diagnostics News
- Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
- Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
- Two-in-One DNA Analysis Improves Diagnostic Accuracy While Saving Time and Costs
- “Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
- New Tool Maps Chromosome Shifts in Cancer Cells to Predict Tumor Evolution
- Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
- Newly-Identified Parkinson’s Biomarkers to Enable Early Diagnosis Via Blood Tests
- New Blood Test Could Detect Pancreatic Cancer at More Treatable Stage
- Liquid Biopsy Could Replace Surgical Biopsy for Diagnosing Primary Central Nervous Lymphoma
- New Tool Reveals Hidden Metabolic Weakness in Blood Cancers
- World's First Blood Test Distinguishes Between Benign and Cancerous Lung Nodules
- Rapid Test Uses Mobile Phone to Identify Severe Imported Malaria Within Minutes
- Gut Microbiome Signatures Predict Long-Term Outcomes in Acute Pancreatitis
- Blood Test Promises Faster Answers for Deadly Fungal Infections
- Blood Test Could Detect Infection Exposure History
- Urine-Based MRD Test Tracks Response to Bladder Cancer Surgery
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







