Novel Stool Biomarker Screening Tests Detect Colorectal Cancer and Inflammatory Bowel Disease
|
By LabMedica International staff writers Posted on 12 Jul 2021 |

Image: Micrograph showing inflammation of the large bowel in a case of inflammatory bowel disease (Photo courtesy of Wikimedia Commons)
Two recent papers described the use of novel stool protein biomarkers in screening tests to diagnose colorectal cancer (CRC) and inflammatory bowel disease (IBD).
The attributable risk of developing IBD (ulcerative colitis and Crohn's disease) is about 0.5% in the general population, with IBD affecting about 1.6 million Americans, including as many as 80,000 children. With over 20% of cases being diagnosed before the age of 17, IBD is one of the most common gastrointestinal chronic diseases affecting children and adolescents. Globally more than one million people get colorectal cancer every year resulting in more than 715,000 deaths. CRC has been the second most common cause of cancer in women (9.2% of diagnoses) and the third most common in men (10.0%), and has been the fourth most common cause of cancer death after lung, stomach, and liver cancer. People with inflammatory bowel disease (ulcerative colitis and Crohn's disease) are at increased risk of developing colon cancer.
Investigators at the University of Houston (TX, USA) conducted studies to identify and validate stool protein biomarkers for diagnosis of CRC and IBD. In one study, published in the June 12, 2021, online edition of the Journal of Gastroenterology, a novel aptamer-based screen of 1317 proteins was used to uncover elevated proteins in the stool of patients with CRC, as compared to healthy controls (HCs). A total of 92 proteins were significantly elevated in CRC samples as compared to HCs. Among Caucasians, the five most discriminatory proteins among the 16 selected proteins, ordered by their ability to distinguish CRC from adenoma and healthy controls, were MMP9, haptoglobin, myeloperoxidase, fibrinogen, and adiponectin. Excepting myeloperoxidase, the markers were significantly associated with depth of tumor invasion.
In another study, which was published in the June 28, 2021, online edition of the journal Nature Communications, an aptamer-based screen of 1129 stool proteins was conducted using stool samples from an IBD cohort. Results of the screen revealed that of the 20 proteins subsequently validated by ELISA, stool ferritin, fibrinogen, haptoglobin, hemoglobin, lipocalin-2, MMP-12, MMP-9, myeloperoxidase, PGRP-S, properdin, resistin, serpin A4, and TIMP-1 were significantly elevated in both ulcerative colitis (UC) and Crohn’s disease (CD) as compared to controls.
Aptamers are nucleic acid species that have been engineered through repeated rounds of in vitro selection to bind to various molecular targets such as small molecules, proteins, nucleic acids, and even cells, tissues, and organisms. Aptamers are useful in biotechnological and therapeutic applications as they offer molecular recognition properties that rival that of antibodies. In addition to their discriminate recognition, aptamers offer advantages over antibodies as they can be engineered completely in a test tube, are readily produced by chemical synthesis, possess desirable storage properties, and elicit little or no immunogenicity in therapeutic applications.
"The unique aspect of both research reports is that we are looking at stool samples comprehensively, and not just at one or two favorite molecules," said senior author Dr. Chandra Mohan, professor of biomedical engineering in the University of Houston. "We are casting a wide net, and this has never been done before. Using the new biomarkers, we can predict if the disease will become worse or if the intestines will become more inflamed. Stool proteins assayed at baseline can predict how the disease might progress in the weeks and months ahead. By the time you see blood, it might be too late, and there are other proteins that appear in the stool if someone has colon cancer, and they may appear much earlier than when the blood appears. We demonstrate the utility of comprehensive aptamer-based proteomic screens in identifying novel disease biomarkers for IBD that outperform the current gold standard, fecal calprotectin."
Related Links:
University of Houston
The attributable risk of developing IBD (ulcerative colitis and Crohn's disease) is about 0.5% in the general population, with IBD affecting about 1.6 million Americans, including as many as 80,000 children. With over 20% of cases being diagnosed before the age of 17, IBD is one of the most common gastrointestinal chronic diseases affecting children and adolescents. Globally more than one million people get colorectal cancer every year resulting in more than 715,000 deaths. CRC has been the second most common cause of cancer in women (9.2% of diagnoses) and the third most common in men (10.0%), and has been the fourth most common cause of cancer death after lung, stomach, and liver cancer. People with inflammatory bowel disease (ulcerative colitis and Crohn's disease) are at increased risk of developing colon cancer.
Investigators at the University of Houston (TX, USA) conducted studies to identify and validate stool protein biomarkers for diagnosis of CRC and IBD. In one study, published in the June 12, 2021, online edition of the Journal of Gastroenterology, a novel aptamer-based screen of 1317 proteins was used to uncover elevated proteins in the stool of patients with CRC, as compared to healthy controls (HCs). A total of 92 proteins were significantly elevated in CRC samples as compared to HCs. Among Caucasians, the five most discriminatory proteins among the 16 selected proteins, ordered by their ability to distinguish CRC from adenoma and healthy controls, were MMP9, haptoglobin, myeloperoxidase, fibrinogen, and adiponectin. Excepting myeloperoxidase, the markers were significantly associated with depth of tumor invasion.
In another study, which was published in the June 28, 2021, online edition of the journal Nature Communications, an aptamer-based screen of 1129 stool proteins was conducted using stool samples from an IBD cohort. Results of the screen revealed that of the 20 proteins subsequently validated by ELISA, stool ferritin, fibrinogen, haptoglobin, hemoglobin, lipocalin-2, MMP-12, MMP-9, myeloperoxidase, PGRP-S, properdin, resistin, serpin A4, and TIMP-1 were significantly elevated in both ulcerative colitis (UC) and Crohn’s disease (CD) as compared to controls.
Aptamers are nucleic acid species that have been engineered through repeated rounds of in vitro selection to bind to various molecular targets such as small molecules, proteins, nucleic acids, and even cells, tissues, and organisms. Aptamers are useful in biotechnological and therapeutic applications as they offer molecular recognition properties that rival that of antibodies. In addition to their discriminate recognition, aptamers offer advantages over antibodies as they can be engineered completely in a test tube, are readily produced by chemical synthesis, possess desirable storage properties, and elicit little or no immunogenicity in therapeutic applications.
"The unique aspect of both research reports is that we are looking at stool samples comprehensively, and not just at one or two favorite molecules," said senior author Dr. Chandra Mohan, professor of biomedical engineering in the University of Houston. "We are casting a wide net, and this has never been done before. Using the new biomarkers, we can predict if the disease will become worse or if the intestines will become more inflamed. Stool proteins assayed at baseline can predict how the disease might progress in the weeks and months ahead. By the time you see blood, it might be too late, and there are other proteins that appear in the stool if someone has colon cancer, and they may appear much earlier than when the blood appears. We demonstrate the utility of comprehensive aptamer-based proteomic screens in identifying novel disease biomarkers for IBD that outperform the current gold standard, fecal calprotectin."
Related Links:
University of Houston
Latest Molecular Diagnostics News
- Genetic Marker to Help Children with T-Cell Leukemia Avoid Unnecessary Chemotherapy
- Four-Gene Blood Test Rules Out Bacterial Lung Infection
- New PCR Test Improves Diagnostic Accuracy of Bacterial Vaginosis and Candida Vaginitis
- New Serum Marker-Editing Strategy to Improve Diagnosis of Neurological Diseases
- World’s First Genetic Type 1 Diabetes Risk Test Enables Early Detection
- Blood Test to Help Low-Risk Gastric Cancer Patients Avoid Unnecessary Surgery
- First-Of-Its-Kind Automated System Speeds Myeloma Diagnosis
- Blood Protein Profiles Predict Mortality Risk for Earlier Medical Intervention
- First Of Its Kind Blood Test Detects Gastric Cancer in Asymptomatic Patients
- Portable Molecular Test Detects STIs at POC in 15 Minutes
- Benchtop Analyzer Runs Chemistries, Immunoassays and Hematology in Single Device
- POC Bordetella Test Delivers PCR-Accurate Results in 15 Minutes
- Pinprick Blood Test Could Detect Disease 10 Years Before Symptoms Appear
- Refined C-Reactive Protein Cutoffs Help Assess Sepsis Risk in Preterm Babies
- Blood Test Accurately Detects Brain Amyloid Pathology in Symptomatic Patients
- New Molecular Test Improves Diagnostic Accuracy of Lyme Disease
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
Since HIV was identified in 1983, more than 91 million people have contracted the virus, and over 44 million have died from related causes. Today, nearly 40 million individuals worldwide live with HIV-1,... Read more
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read moreMicrobiology
view channel
Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
Sepsis kills 11 million people worldwide every year and generates massive healthcare costs. In the USA and Europe alone, sepsis accounts for USD 100 billion in annual hospitalization expenses.... Read moreRapid POC Tuberculosis Test Provides Results Within 15 Minutes
Tuberculosis remains one of the world’s deadliest infectious diseases, and reducing new cases depends on identifying individuals with latent infection before it progresses. Current diagnostic tools often... Read more
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read morePathology
view channelAI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
Diagnosing blood disorders depends on recognizing subtle abnormalities in cell size, shape, and structure, yet this process is slow, subjective, and requires years of expert training. Even specialists... Read more
AI Tool Rapidly Analyzes Complex Cancer Images for Personalized Treatment
Complex digital biopsy images that typically take an expert pathologist up to 20 minutes to assess can now be analyzed in about one minute using a new artificial intelligence (AI) tool. The technology... Read moreTechnology
view channel
Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Identifying which genetic variants actually cause disease remains one of the biggest challenges in genomic medicine. Each person carries tens of thousands of DNA changes, yet only a few meaningfully alter... Read more
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








