Circulating Tumor DNA Following Surgery Predicts Bladder Cancer Recurrence
|
By LabMedica International staff writers Posted on 01 Jul 2021 |

Image: Space-filling model of the antigen-binding fragment of atezolizumab (pale blue) in complex with PD-L1 (pink) (Photo courtesy of Wikimedia Commons)
A blood test that detects circulating tumor DNA (ctDNA) predicts risk of bladder cancer recurrence following surgery and can be used to guide precision treatment of the disease.
Worldwide, there were approximately 573,000 cases of bladder cancer with about 212,000 deaths in 2020. Surgery, which is the usual first treatment for the disorder, often leaves behind some cancer cells, molecular residual disease (MRD), which can regenerate the tumor. Rather than just waiting to see if the cancer returns following surgery, researchers are developing minimally invasive approaches for detection of MRD after surgery to identify patients who are at risk for metastatic relapse.
In this regard, circulating tumor DNA (ctDNA) holds promise as a biomarker for molecular residual disease and relapse. This follows from studies showing that liquid biopsy analysis of circulating cell-free DNA (cfDNA) from peripheral blood could be a valuable diagnostic tool in oncology, since sample collection is quick and minimally invasive. In cancer patients, cfDNA consists in part of cancer-derived circulating tumor DNA (ctDNA), and it has been shown that tumor-related genetic and epigenetic alterations can be detected by analyzing cfDNA in cancer patients. As a consequence, cfDNA analysis holds great promise for precision oncology and personalized therapies, and is currently being evaluated in a broad range of clinical studies.
To test for MRD in bladder cancer patients following surgery, investigators at Queen Mary University of London (United Kingdom) used a ctDNA liquid biopsy approach to evaluate treatment outcomes in 581 individuals who were enrolled in a randomized phase III trial and a phase II study, which investigated whether the drug atezolizumab could reduce cancer recurrence in high-risk muscle-invasive urothelial carcinoma.
Atezolizumab is a fully humanized, engineered monoclonal antibody of IgG1 isotype against the protein programmed cell death-ligand 1 (PD-L1). It is used to treat urothelial carcinoma, non-small cell lung cancer (NSCLC), triple-negative breast cancer (TNBC), small cell lung cancer (SCLC), and hepatocellular carcinoma (HCC). The drug’s most common adverse side effects include urinary tract infection, fatigue, decreased appetite, nausea, and infections.
Results obtained by this study revealed that patients with ctDNA-positive blood tests after surgery were at higher risk of cancer recurrence than those who were ctDNA-negative. Treatment with atezolizumab did not significantly improve disease-free survival (DFS) or overall survival (OS) in the whole study population; however, in the ctDNA-positive subgroup of patients evaluated in this study, treatment with atezolizumab compared with observation alone significantly improved DFS and OS. The outcomes in patients who were ctDNA-negative did not appear to differ whether they received atezolizumab or not.
First author Dr. Tom Powles, professor of genitourinary oncology at Queen Mary University of London, said, "These novel findings demonstrate ctDNA as a marker for residual disease and response to atezolizumab. We also found ctDNA measurement to be more accurate than traditional radiology at identifying disease relapse. These findings may change our understanding of post-surgical cancer care and, if validated in this setting as well as across tumor types, they may also change clinical practice."
The study was published in the June 16, 2021, online edition of the journal Nature.
Related Links:
Queen Mary University of London
Worldwide, there were approximately 573,000 cases of bladder cancer with about 212,000 deaths in 2020. Surgery, which is the usual first treatment for the disorder, often leaves behind some cancer cells, molecular residual disease (MRD), which can regenerate the tumor. Rather than just waiting to see if the cancer returns following surgery, researchers are developing minimally invasive approaches for detection of MRD after surgery to identify patients who are at risk for metastatic relapse.
In this regard, circulating tumor DNA (ctDNA) holds promise as a biomarker for molecular residual disease and relapse. This follows from studies showing that liquid biopsy analysis of circulating cell-free DNA (cfDNA) from peripheral blood could be a valuable diagnostic tool in oncology, since sample collection is quick and minimally invasive. In cancer patients, cfDNA consists in part of cancer-derived circulating tumor DNA (ctDNA), and it has been shown that tumor-related genetic and epigenetic alterations can be detected by analyzing cfDNA in cancer patients. As a consequence, cfDNA analysis holds great promise for precision oncology and personalized therapies, and is currently being evaluated in a broad range of clinical studies.
To test for MRD in bladder cancer patients following surgery, investigators at Queen Mary University of London (United Kingdom) used a ctDNA liquid biopsy approach to evaluate treatment outcomes in 581 individuals who were enrolled in a randomized phase III trial and a phase II study, which investigated whether the drug atezolizumab could reduce cancer recurrence in high-risk muscle-invasive urothelial carcinoma.
Atezolizumab is a fully humanized, engineered monoclonal antibody of IgG1 isotype against the protein programmed cell death-ligand 1 (PD-L1). It is used to treat urothelial carcinoma, non-small cell lung cancer (NSCLC), triple-negative breast cancer (TNBC), small cell lung cancer (SCLC), and hepatocellular carcinoma (HCC). The drug’s most common adverse side effects include urinary tract infection, fatigue, decreased appetite, nausea, and infections.
Results obtained by this study revealed that patients with ctDNA-positive blood tests after surgery were at higher risk of cancer recurrence than those who were ctDNA-negative. Treatment with atezolizumab did not significantly improve disease-free survival (DFS) or overall survival (OS) in the whole study population; however, in the ctDNA-positive subgroup of patients evaluated in this study, treatment with atezolizumab compared with observation alone significantly improved DFS and OS. The outcomes in patients who were ctDNA-negative did not appear to differ whether they received atezolizumab or not.
First author Dr. Tom Powles, professor of genitourinary oncology at Queen Mary University of London, said, "These novel findings demonstrate ctDNA as a marker for residual disease and response to atezolizumab. We also found ctDNA measurement to be more accurate than traditional radiology at identifying disease relapse. These findings may change our understanding of post-surgical cancer care and, if validated in this setting as well as across tumor types, they may also change clinical practice."
The study was published in the June 16, 2021, online edition of the journal Nature.
Related Links:
Queen Mary University of London
Latest Molecular Diagnostics News
- Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
- Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
- Two-in-One DNA Analysis Improves Diagnostic Accuracy While Saving Time and Costs
- “Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
- New Tool Maps Chromosome Shifts in Cancer Cells to Predict Tumor Evolution
- Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
- Newly-Identified Parkinson’s Biomarkers to Enable Early Diagnosis Via Blood Tests
- New Blood Test Could Detect Pancreatic Cancer at More Treatable Stage
- Liquid Biopsy Could Replace Surgical Biopsy for Diagnosing Primary Central Nervous Lymphoma
- New Tool Reveals Hidden Metabolic Weakness in Blood Cancers
- World's First Blood Test Distinguishes Between Benign and Cancerous Lung Nodules
- Rapid Test Uses Mobile Phone to Identify Severe Imported Malaria Within Minutes
- Gut Microbiome Signatures Predict Long-Term Outcomes in Acute Pancreatitis
- Blood Test Promises Faster Answers for Deadly Fungal Infections
- Blood Test Could Detect Infection Exposure History
- Urine-Based MRD Test Tracks Response to Bladder Cancer Surgery
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







