Familial Hypercholesterolemia Tends to Slip Past Genetic Tests
|
By LabMedica International staff writers Posted on 10 Jun 2021 |

Image: The NovaSeq 6000 performs whole-genome sequencing (Photo courtesy of Illumina)
Familial hypercholesterolemia is a genetic disorder characterized by high cholesterol levels, specifically very high levels of low-density lipoprotein (LDL), in the blood and early cardiovascular disease. The most common mutations diminish the number of functional LDL receptors in the liver.
Familial hypercholesterolemia (FH) is the most common inherited cardiovascular disease and carries significant morbidity and mortality risks. Genetic testing can identify affected individuals, but some array-based assays screen only a small subset of known pathogenic variants. FH is an autosomal dominant disorder most frequently associated with variants in the LDL receptor (LDLR) gene.
Molecular Biochemists at the Geisinger Genomic Medicine Institute (Danville, PA, USA) and their colleagues carried out a cross-sectional study and compared comprehensive genetic test results for clinically significant variants associated with FH with results for a subset of 24 variants screened by a limited-variant array. Data were deidentified next-generation sequencing results from indication-based or proactive gene panels. Individuals receiving next-generation sequencing–based genetic testing, either for an FH indication between November 2015 and June 2020 or as proactive health screening between February 2016 and June 2020 were included.
Genes were targeted with oligonucleotide baits to capture the exons ±10 base pairs of adjacent intronic sequence and certain noncoding regions of clinical interest. Targeted regions were sequenced to a mean depth of 350× read coverage (minimum 50×). All primary sequencing was performed on Illumina HiSeq or NovaSeq instruments (Illumina, San Diego, CA, USA). The number of pathogenic or likely pathogenic (P/LP) variants were identified. The study included 4,563 individuals who were referred for FH diagnostic testing and 6,482 individuals who received next-generation sequencing of FH-associated genes as part of a proactive genetic test. Among individuals in the indication cohort, the median (interquartile range) age at testing was 49 (32-61) years, 55.4% (2,528 of 4,563) were female, and 63.6% (2,902 of 4,563) were self-reported White/Caucasian.
The cohorts were tested for more than 2,000 possible variants in four FH-associated genes: LDLR, APOB, PCSK9, and LDLRAP1. The team reported that in the indication cohort, the positive detection rate would have been 8.4% (382 of 4,563) for a limited-variant screen compared with the 27.0% (1,230 of 4,563) observed with the next-generation sequencing–based comprehensive test. As a result, 68.9% (848 of 1,230) of individuals with a P/LP finding in an FH-associated gene would have been missed by the limited screen.
The potential for missed findings in the indication cohort varied by ancestry; among individuals with a P/LP finding, 93.7% (59 of 63) of self-reported Black/African American individuals and 84.7% (122 of 144) of Hispanic individuals would have been missed by the limited-variant screen, compared with 33.3% (4 of 12) of Ashkenazi Jewish individuals. In the proactive cohort, the prevalence of clinically significant FH variants was approximately 1:191 per the comprehensive test, and 61.8% (21 of 34) of individuals with an FH-associated P/LP finding would have been missed by a limited-variant screen.
The authors concludes that limited-variant screens may falsely reassure the majority of individuals at risk for FH that they do not carry a disease-causing variant, especially individuals of self-reported Black/African American and Hispanic ancestry. The study was published on May 26, 2021 in the journal JAMA Cardiology.
Related Links:
Geisinger Genomic Medicine Institute
Illumina
Familial hypercholesterolemia (FH) is the most common inherited cardiovascular disease and carries significant morbidity and mortality risks. Genetic testing can identify affected individuals, but some array-based assays screen only a small subset of known pathogenic variants. FH is an autosomal dominant disorder most frequently associated with variants in the LDL receptor (LDLR) gene.
Molecular Biochemists at the Geisinger Genomic Medicine Institute (Danville, PA, USA) and their colleagues carried out a cross-sectional study and compared comprehensive genetic test results for clinically significant variants associated with FH with results for a subset of 24 variants screened by a limited-variant array. Data were deidentified next-generation sequencing results from indication-based or proactive gene panels. Individuals receiving next-generation sequencing–based genetic testing, either for an FH indication between November 2015 and June 2020 or as proactive health screening between February 2016 and June 2020 were included.
Genes were targeted with oligonucleotide baits to capture the exons ±10 base pairs of adjacent intronic sequence and certain noncoding regions of clinical interest. Targeted regions were sequenced to a mean depth of 350× read coverage (minimum 50×). All primary sequencing was performed on Illumina HiSeq or NovaSeq instruments (Illumina, San Diego, CA, USA). The number of pathogenic or likely pathogenic (P/LP) variants were identified. The study included 4,563 individuals who were referred for FH diagnostic testing and 6,482 individuals who received next-generation sequencing of FH-associated genes as part of a proactive genetic test. Among individuals in the indication cohort, the median (interquartile range) age at testing was 49 (32-61) years, 55.4% (2,528 of 4,563) were female, and 63.6% (2,902 of 4,563) were self-reported White/Caucasian.
The cohorts were tested for more than 2,000 possible variants in four FH-associated genes: LDLR, APOB, PCSK9, and LDLRAP1. The team reported that in the indication cohort, the positive detection rate would have been 8.4% (382 of 4,563) for a limited-variant screen compared with the 27.0% (1,230 of 4,563) observed with the next-generation sequencing–based comprehensive test. As a result, 68.9% (848 of 1,230) of individuals with a P/LP finding in an FH-associated gene would have been missed by the limited screen.
The potential for missed findings in the indication cohort varied by ancestry; among individuals with a P/LP finding, 93.7% (59 of 63) of self-reported Black/African American individuals and 84.7% (122 of 144) of Hispanic individuals would have been missed by the limited-variant screen, compared with 33.3% (4 of 12) of Ashkenazi Jewish individuals. In the proactive cohort, the prevalence of clinically significant FH variants was approximately 1:191 per the comprehensive test, and 61.8% (21 of 34) of individuals with an FH-associated P/LP finding would have been missed by a limited-variant screen.
The authors concludes that limited-variant screens may falsely reassure the majority of individuals at risk for FH that they do not carry a disease-causing variant, especially individuals of self-reported Black/African American and Hispanic ancestry. The study was published on May 26, 2021 in the journal JAMA Cardiology.
Related Links:
Geisinger Genomic Medicine Institute
Illumina
Latest Molecular Diagnostics News
- Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
- Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
- Two-in-One DNA Analysis Improves Diagnostic Accuracy While Saving Time and Costs
- “Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
- New Tool Maps Chromosome Shifts in Cancer Cells to Predict Tumor Evolution
- Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
- Newly-Identified Parkinson’s Biomarkers to Enable Early Diagnosis Via Blood Tests
- New Blood Test Could Detect Pancreatic Cancer at More Treatable Stage
- Liquid Biopsy Could Replace Surgical Biopsy for Diagnosing Primary Central Nervous Lymphoma
- New Tool Reveals Hidden Metabolic Weakness in Blood Cancers
- World's First Blood Test Distinguishes Between Benign and Cancerous Lung Nodules
- Rapid Test Uses Mobile Phone to Identify Severe Imported Malaria Within Minutes
- Gut Microbiome Signatures Predict Long-Term Outcomes in Acute Pancreatitis
- Blood Test Promises Faster Answers for Deadly Fungal Infections
- Blood Test Could Detect Infection Exposure History
- Urine-Based MRD Test Tracks Response to Bladder Cancer Surgery
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







