A Novel Liquid Biopsy Technique for Diagnosis of Cancers in Children
By LabMedica International staff writers Posted on 07 Jun 2021 |

Image: Extracting tumor epigenetics from blood (Photo courtesy of Tatjana Hirschmugl)
A novel liquid biopsy technique for cancer diagnosis in pediatric patients detects and quantifies epigenetic signatures based on cell-free DNA (cfDNA) fragmentation patterns.
Liquid biopsy analysis of circulating cfDNA from peripheral blood has emerged as a valuable diagnostic tool in oncology, since sample collection is quick and minimally invasive. In cancer patients, cfDNA consists in part of cancer-derived circulating tumor DNA (ctDNA), and it has been shown that tumor-related genetic and epigenetic alterations can be detected by analyzing cfDNA in cancer patients. As a consequence, cfDNA analysis holds great promise for precision oncology and personalized therapies, and is currently being evaluated in a broad range of clinical studies. However, the use of liquid biopsy for childhood cancers has so far been hampered by the fact that many childhood tumors have few genetic alterations that are detectable in cfDNA.
To improve this situation, investigators at St. Anna Children's Cancer Research Institute (Vienna, Austria) introduced an integrated genetic/epigenetic analysis method and demonstrated its utility on 241 deep whole-genome sequencing profiles of 95 patients with Ewing sarcoma and 31 patients with other pediatric sarcomas. Ewing sarcoma is a type of cancer that may be a bone sarcoma or a soft-tissue sarcoma. Symptoms may include swelling and pain at the site of the tumor, fever, and a bone fracture. Ewing sarcoma occurs most often in teenagers and young adults and represents 2% of childhood cancers.
The method introduced in the current study was based on analysis of the fragmentation patterns of the small DNA fragments leaked by tumors into the blood stream, which reflected the unique epigenetic signature of many childhood cancers.
Results revealed that tumor DNA in the blood of patients with Ewing sarcoma was highly and characteristically fragmented. The investigators identified an Ewing sarcoma-specific epigenetic signature among regional fragmentation patterns across the genome, and presented a bioinformatic method for accurate quantification of these epigenetic signatures in cfDNA. Ultimately, they conducted one of the largest cfDNA sequencing studies for childhood cancer, resulting in a detailed genetic and epigenetic analysis of Ewing sarcoma tumors using liquid biopsies.
"We previously identified unique epigenetic signatures of Ewing sarcoma. We reasoned that these characteristic epigenetic signatures should be preserved in the fragmentation patterns of tumor-derived DNA circulating in the blood. This would provide us with a much-needed marker for early diagnosis and tumor classification using the liquid biopsy concept," said senior author Dr. Eleni Tomazou, principal investigator of the epigenome-based precision medicine group at St. Anna Children's Cancer Research Institute.
The current study unveiled the LIQUORICE algorithm for detecting circulating tumor DNA based on cancer-specific chromatin signatures. "By feeding these machine learning algorithms with our extensive whole genome sequencing data of tumor-derived DNA in the blood stream, the analysis becomes highly sensitive and in many instances outperforms conventional genetic analyses", said Dr. Tomazou. "Right now, most patients receive very high doses of chemotherapy, while some patients may be cured already with a less severe therapy, which would reduce their risk of getting other cancers later in life. There is a real medical need for adaptive clinical trials and personalized treatment of bone tumors in children."
The pediatric liquid biopsy study was published in the May 28, 2021, online edition of the journal Nature Communications.
Related Links:
St. Anna Children's Cancer Research Institute
Liquid biopsy analysis of circulating cfDNA from peripheral blood has emerged as a valuable diagnostic tool in oncology, since sample collection is quick and minimally invasive. In cancer patients, cfDNA consists in part of cancer-derived circulating tumor DNA (ctDNA), and it has been shown that tumor-related genetic and epigenetic alterations can be detected by analyzing cfDNA in cancer patients. As a consequence, cfDNA analysis holds great promise for precision oncology and personalized therapies, and is currently being evaluated in a broad range of clinical studies. However, the use of liquid biopsy for childhood cancers has so far been hampered by the fact that many childhood tumors have few genetic alterations that are detectable in cfDNA.
To improve this situation, investigators at St. Anna Children's Cancer Research Institute (Vienna, Austria) introduced an integrated genetic/epigenetic analysis method and demonstrated its utility on 241 deep whole-genome sequencing profiles of 95 patients with Ewing sarcoma and 31 patients with other pediatric sarcomas. Ewing sarcoma is a type of cancer that may be a bone sarcoma or a soft-tissue sarcoma. Symptoms may include swelling and pain at the site of the tumor, fever, and a bone fracture. Ewing sarcoma occurs most often in teenagers and young adults and represents 2% of childhood cancers.
The method introduced in the current study was based on analysis of the fragmentation patterns of the small DNA fragments leaked by tumors into the blood stream, which reflected the unique epigenetic signature of many childhood cancers.
Results revealed that tumor DNA in the blood of patients with Ewing sarcoma was highly and characteristically fragmented. The investigators identified an Ewing sarcoma-specific epigenetic signature among regional fragmentation patterns across the genome, and presented a bioinformatic method for accurate quantification of these epigenetic signatures in cfDNA. Ultimately, they conducted one of the largest cfDNA sequencing studies for childhood cancer, resulting in a detailed genetic and epigenetic analysis of Ewing sarcoma tumors using liquid biopsies.
"We previously identified unique epigenetic signatures of Ewing sarcoma. We reasoned that these characteristic epigenetic signatures should be preserved in the fragmentation patterns of tumor-derived DNA circulating in the blood. This would provide us with a much-needed marker for early diagnosis and tumor classification using the liquid biopsy concept," said senior author Dr. Eleni Tomazou, principal investigator of the epigenome-based precision medicine group at St. Anna Children's Cancer Research Institute.
The current study unveiled the LIQUORICE algorithm for detecting circulating tumor DNA based on cancer-specific chromatin signatures. "By feeding these machine learning algorithms with our extensive whole genome sequencing data of tumor-derived DNA in the blood stream, the analysis becomes highly sensitive and in many instances outperforms conventional genetic analyses", said Dr. Tomazou. "Right now, most patients receive very high doses of chemotherapy, while some patients may be cured already with a less severe therapy, which would reduce their risk of getting other cancers later in life. There is a real medical need for adaptive clinical trials and personalized treatment of bone tumors in children."
The pediatric liquid biopsy study was published in the May 28, 2021, online edition of the journal Nature Communications.
Related Links:
St. Anna Children's Cancer Research Institute
Latest Molecular Diagnostics News
- Blood Test Could Predict Likelihood of Breast Cancer Spreading to The Bone
- New Infectious Disease Analytics Platform Speeds Up Clinical Decision-Making at POC
- Genetic Test Could Predict Poor Outcomes in Lung Transplant Patients
- Breakthrough Blood Test Enables Early Pancreatic Cancer Detection
- Genomic Testing in NICU Reduces Missed Diagnoses
- New Genetic Test Improves Diabetes Prediction and Classification
- New Blood Test for Leukemia Risk Detection Could Replace Bone Marrow Sampling
- Blood Test Detects Preeclampsia Risk Months Before Symptoms Appear
- mNGS CSF Test Outperforms Traditional Microbiological Testing for Infectious Diseases
- Point-Of-Care Test to Transform Early-Stage Cervical Cancer Diagnosis
- PET/ctDNA-Guided Approach Helps Determine Lymphoma Treatment
- Next-Generation 'Agnostic Diagnostics' to Detect Respiratory Viruses at POC
- First-Ever Test of Cure for Chagas Disease Determines Treatment Effectiveness
- Capsule Sponge Test Could Replace Endoscopies for Monitoring Esophageal Cancer Risk
- Nasal Swab Test Offers Simpler and Less Costly Virus Screening in High-Risk Settings
- DNA Test Accurately Predicts Resistance to Common Chemotherapy Treatments
Channels
Clinical Chemistry
view channel
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read more
Pen-Like Tool Quickly and Non-Invasively Detects Opioids from Skin
Opioid drugs such as fentanyl, morphine, and oxycodone are the primary substances associated with overdose cases in the United States. Standard drug screening procedures typically involve collecting blood,... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Blood Test Detects Organ Rejection in Heart Transplant Patients
Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Liquid Biopsy Approach to Transform Diagnosis, Monitoring and Treatment of Lung Cancer
Lung cancer continues to be a major contributor to cancer-related deaths globally, with its biological complexity and diverse regulatory processes making diagnosis and treatment particularly difficult.... Read more
Computational Tool Exposes Hidden Cancer DNA Changes Influencing Treatment Resistance
Structural changes in tumor DNA are among the most damaging genetic alterations in cancer, yet they often go undetected, particularly when tissue samples are degraded or of low quality. These hidden genomic... Read moreMicrobiology
view channel
Viral Load Tests Can Help Predict Mpox Severity
Mpox is a viral infection that causes flu-like symptoms and a characteristic rash, which evolves significantly over time and varies between patients. The disease spreads mainly through direct contact with... Read more
Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
Gestational diabetes mellitus is a common metabolic disorder marked by abnormal glucose metabolism during pregnancy, typically emerging in the mid to late stages. It significantly heightens the risk of... Read morePathology
view channel
AI Performs Virtual Tissue Staining at Super-Resolution
Conventional histopathology, essential for diagnosing various diseases, typically involves chemically staining tissue samples to reveal cellular structures under a microscope. This process, known as “histochemical... Read more
AI-Driven Preliminary Testing for Pancreatic Cancer Enhances Prognosis
Pancreatic cancer poses a major global health threat due to its high mortality rate, with 467,409 deaths and 510,992 new cases reported worldwide in 2022. Often referred to as the "king" of all cancers,... Read more
Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response
Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Clinical AI Solution for Automatic Breast Cancer Grading Improves Diagnostic Accuracy
Labs that use traditional image analysis methods often suffer from bottlenecks and delays. By digitizing their pathology practices, labs can streamline their work, allowing them to take on larger caseloads... Read moreTechnology
view channel
Inexpensive DNA Coated Electrode Paves Way for Disposable Diagnostics
Many people around the world still lack access to affordable, easy-to-use diagnostics for diseases like cancer, HIV, and influenza. Conventional sensors, while accurate, often rely on expensive equipment... Read more
New Miniature Device to Transform Testing of Blood Cancer Treatments
Chimeric antigen receptor (CAR) T cell therapy has emerged as a groundbreaking treatment for blood cancers like leukemia, offering hope to patients when other treatments fail. However, despite its promise,... Read moreIndustry
view channel
AMP Releases Best Practice Recommendations to Guide Clinical Laboratories Offering HRD Testing
Homologous recombination deficiency (HRD) testing identifies tumors that are unable to effectively repair DNA damage through the homologous recombination repair pathway. This deficiency is often linked... Read more