Next Generation Sequencing Testing Protocol for SARS-CoV-2 Can Process Tens of Thousands of Samples in Less Than 48 Hours
By LabMedica International staff writers Posted on 26 May 2021 |

Image: Next Generation Sequencing Testing Protocol for SARS-CoV-2 Can Process Tens of Thousands of Samples in Less Than 48 Hours (Photo courtesy of Peter Duchek)
A new testing protocol for SARS-CoV-2 can process tens of thousands of samples in less than 48 hours and could also be adapted to many more pathogens.
The method, called SARSeq, has been developed by researchers at the Vienna BioCenter (Vienna, Austria) by combining their expertise in genomics, RNA biochemistry and data analysis.
Molecular tests that detect the presence of SARS-CoV-2 have become the best way to isolate positive cases and contain the spread of the virus. Several methods have come forward, some that detect viral proteins from nasopharyngeal swabs (such as antigen tests), and some that detect the presence of viral RNA from swabs, gargle samples, or saliva samples (such as reverse transcription and polymerase chain reaction tests, or RT-PCR).
Although antigen tests facilitate some logistical aspects of mass testing, their detection power is relatively weak – infected individuals carrying low amounts of virus remain undetected and can continue to infect other people. PCR tests, on the other hand, are more sensitive because they multiply fragments of the viral genome before scanning samples for the virus. However, they rely on the detection of fluorescent labels that tag viral sequences, which means that pooling samples coming from different people makes the process rather inefficient: if a pool tests positive, all the samples within the pool must be tested again individually to identify the source of the fluorescent signal. Too many machines needed, too expensive, too slow.
The new method developed by scientists at the Vienna BioCenter could enable large groups to be tested for SARS-CoV-2 with the same sensitivity as regular PCR tests. SARSeq, or ‘Saliva Analysis by RNA sequencing’, achieves high sensitivity, specificity, and the power to process up to 36,000 samples in less than 48 hours. The testing principle is conceptually simple: individual patient samples are collected into the wells of a testing plate - one well for each sample. Then, a fragment of viral RNA unique to SARS-CoV-2 - the nucleocapsid gene - is selectively converted to DNA and PCR-amplified in any well that contains it.
What distinguishes this first step to the usual PCR test is that each sample receives a unique set of short DNA sequences – or barcodes – that attach to the amplifying viral DNA. In a second amplification step, all the samples from one plate are pooled into one well, which receives a second set of unique DNA barcodes. The contents of multiple plates can be pooled once more, as the DNA molecules from each sample carry a unique combination of two sets of barcodes. This pooling and barcoding strategy makes SARSeq highly specific and scalable. Moreover, the NGS-based method allows to test several RNAs in parallel, including RNAs that control the sample quality or RNAs from other pathogens for differential diagnostics.
The testing procedure can run in parallel to existing diagnostics, while being independent of the bottlenecks in supply chains. Therefore, it does not compete with other testing methods for reagents or equipment. The principles behind SARSeq are simple and adaptable to any respiratory pathogen. As the world’s population skyrockets along with our proximity to animals, cutting-edge diagnostic methods like SARSeq will be crucial to prevent future diseases from spreading like wildfire.
“Amplifying the viral material from individual samples to a maximum homogenizes its quantity across positive samples, making SARSeq highly sensitive,” explained Luisa Cochella, group leader at the Research Institute of Molecular Pathology (IMP). “Within the thousands of samples that we could test simultaneously, some may contain up to 10 million times more coronavirus particles than others – if we pooled such samples before amplification, those with high amounts of viral material could mask other positive cases.”
“We combine the sensitivity of PCR with the high throughput of Next Generation Sequencing technology, or NGS, the same used to sequence the human genome. The NGS machine processes the pooled samples and tells us which samples contained any SARS-CoV-2 material. The barcodes allow us to distinguish each positive sample from the others, and trace it back to a patient,” added Ramesh Yelagandula, first author of the study.
Related Links:
Vienna BioCenter
The method, called SARSeq, has been developed by researchers at the Vienna BioCenter (Vienna, Austria) by combining their expertise in genomics, RNA biochemistry and data analysis.
Molecular tests that detect the presence of SARS-CoV-2 have become the best way to isolate positive cases and contain the spread of the virus. Several methods have come forward, some that detect viral proteins from nasopharyngeal swabs (such as antigen tests), and some that detect the presence of viral RNA from swabs, gargle samples, or saliva samples (such as reverse transcription and polymerase chain reaction tests, or RT-PCR).
Although antigen tests facilitate some logistical aspects of mass testing, their detection power is relatively weak – infected individuals carrying low amounts of virus remain undetected and can continue to infect other people. PCR tests, on the other hand, are more sensitive because they multiply fragments of the viral genome before scanning samples for the virus. However, they rely on the detection of fluorescent labels that tag viral sequences, which means that pooling samples coming from different people makes the process rather inefficient: if a pool tests positive, all the samples within the pool must be tested again individually to identify the source of the fluorescent signal. Too many machines needed, too expensive, too slow.
The new method developed by scientists at the Vienna BioCenter could enable large groups to be tested for SARS-CoV-2 with the same sensitivity as regular PCR tests. SARSeq, or ‘Saliva Analysis by RNA sequencing’, achieves high sensitivity, specificity, and the power to process up to 36,000 samples in less than 48 hours. The testing principle is conceptually simple: individual patient samples are collected into the wells of a testing plate - one well for each sample. Then, a fragment of viral RNA unique to SARS-CoV-2 - the nucleocapsid gene - is selectively converted to DNA and PCR-amplified in any well that contains it.
What distinguishes this first step to the usual PCR test is that each sample receives a unique set of short DNA sequences – or barcodes – that attach to the amplifying viral DNA. In a second amplification step, all the samples from one plate are pooled into one well, which receives a second set of unique DNA barcodes. The contents of multiple plates can be pooled once more, as the DNA molecules from each sample carry a unique combination of two sets of barcodes. This pooling and barcoding strategy makes SARSeq highly specific and scalable. Moreover, the NGS-based method allows to test several RNAs in parallel, including RNAs that control the sample quality or RNAs from other pathogens for differential diagnostics.
The testing procedure can run in parallel to existing diagnostics, while being independent of the bottlenecks in supply chains. Therefore, it does not compete with other testing methods for reagents or equipment. The principles behind SARSeq are simple and adaptable to any respiratory pathogen. As the world’s population skyrockets along with our proximity to animals, cutting-edge diagnostic methods like SARSeq will be crucial to prevent future diseases from spreading like wildfire.
“Amplifying the viral material from individual samples to a maximum homogenizes its quantity across positive samples, making SARSeq highly sensitive,” explained Luisa Cochella, group leader at the Research Institute of Molecular Pathology (IMP). “Within the thousands of samples that we could test simultaneously, some may contain up to 10 million times more coronavirus particles than others – if we pooled such samples before amplification, those with high amounts of viral material could mask other positive cases.”
“We combine the sensitivity of PCR with the high throughput of Next Generation Sequencing technology, or NGS, the same used to sequence the human genome. The NGS machine processes the pooled samples and tells us which samples contained any SARS-CoV-2 material. The barcodes allow us to distinguish each positive sample from the others, and trace it back to a patient,” added Ramesh Yelagandula, first author of the study.
Related Links:
Vienna BioCenter
Latest COVID-19 News
- New Immunosensor Paves Way to Rapid POC Testing for COVID-19 and Emerging Infectious Diseases
- Long COVID Etiologies Found in Acute Infection Blood Samples
- Novel Device Detects COVID-19 Antibodies in Five Minutes
- CRISPR-Powered COVID-19 Test Detects SARS-CoV-2 in 30 Minutes Using Gene Scissors
- Gut Microbiome Dysbiosis Linked to COVID-19
- Novel SARS CoV-2 Rapid Antigen Test Validated for Diagnostic Accuracy
- New COVID + Flu + R.S.V. Test to Help Prepare for `Tripledemic`
- AI Takes Guesswork Out Of Lateral Flow Testing
- Fastest Ever SARS-CoV-2 Antigen Test Designed for Non-Invasive COVID-19 Testing in Any Setting
- Rapid Antigen Tests Detect Omicron, Delta SARS-CoV-2 Variants
- Health Care Professionals Showed Increased Interest in POC Technologies During Pandemic, Finds Study
- Set Up Reserve Lab Capacity Now for Faster Response to Next Pandemic, Say Researchers
- Blood Test Performed During Initial Infection Predicts Long COVID Risk
- Low-Cost COVID-19 Testing Platform Combines Sensitivity of PCR and Speed of Antigen Tests
- Finger-Prick Blood Test Identifies Immunity to COVID-19
- Quick Test Kit Determines Immunity Against COVID-19 and Its Variants
Channels
Clinical Chemistry
view channel
AI-Powered Blood Test Accurately Detects Ovarian Cancer
Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more
Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
Current circulating cell-free DNA (cfDNA) assays are typically centralized, requiring specialized handling and transportation of samples. Introducing a flexible, decentralized sequencing system at the... Read moreMass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read moreMolecular Diagnostics
view channel
Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD
Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more
First-in-Class Diagnostic Blood Test Detects Axial Spondyloarthritis
Axial spondyloarthritis (axSpA) is a chronic inflammatory autoimmune condition that typically affects individuals during their most productive years, with symptoms often emerging before the age of 45.... Read more
New Molecular Label to Help Develop Simpler and Faster Tuberculosis Tests
Tuberculosis (TB), the deadliest infectious disease globally, is responsible for infecting an estimated 10 million people each year and causing over 1 million deaths annually. While chest X-rays and molecular... Read more
Biomarker Discovery Paves Way for Blood Tests to Detect and Treat Osteoarthritis
The number of individuals affected by osteoarthritis is projected to exceed 1 billion by 2050. The primary risk factor for this common, often painful chronic joint condition is aging, and, like aging itself,... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read more
New Test Diagnoses Bacterial Meningitis Quickly and Accurately
Bacterial meningitis is a potentially fatal condition, with one in six patients dying and half of the survivors experiencing lasting symptoms. Therefore, rapid diagnosis and treatment are critical.... Read morePathology
view channel
Groundbreaking Chest Pain Triage Algorithm to Transform Cardiac Care
Cardiovascular disease is responsible for a third of all deaths worldwide, and chest pain is the second most common reason for emergency department (ED) visits. With EDs often being some of the busiest... Read more
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more