Developed Immunoassay Predicts Benefits of Anti-PD-1 Therapy in NSCLC
By LabMedica International staff writers Posted on 12 May 2021 |

Image: The HISCL-5000 is a fully automated immunoassay system designed for fast, highly sensitive and reliable immunoassay testing (Photo courtesy of Sysmex)
Lung cancer is the most common cause of cancer-related deaths worldwide. However, current targeted therapies and immunotherapies have gradually improved patient survival. Anti-programmed cell death-1 (PD-1) antibodies (Abs) are key drugs in non-small-cell lung cancer treatment; however, clinical benefits with anti-PD-1 monotherapy are limited.
Notably, anti-programmed cell death-1 (PD-1) and anti-PD-ligand1 (PD-L1) antibodies (Abs) as immune-checkpoint inhibitors prolong overall survival in non-small-cell lung cancer (NSCLC), which accounts for approximately 80% of lung cancer. However, clinical benefits with anti-PD-1/PD-L1 monotherapy are limited with only 20%–30% overall response rate.
Oncologists at the Kawasaki Medical School, Okayama, Japan and their colleagues obtained sera from advanced NSCLC patients, who received anti-PD-1 monotherapy as standard therapy in a first-line or later setting. Sera were collected within two months before anti-PD-1 monotherapy and were serially done after anti-PD-1 therapy, then frozen and stored at −80 °C until use. ESO-1 and XAGE1 antigen in tumor tissues were immunohistochemically stained in a previous study.
The team developed a fully automated detection system for NY-ESO-1/XAGE1 Abs using an HISCL series (Sysmex, Kobe, Japan), which performs a chemiluminescent sandwich immunoassay. Sera were diluted 400 times with appropriate solution and reacted with magnetic beads coated with recombinant NY-ESO-1 protein or synthetic XAGE1 peptide (GL Biochemistry, Shanghai, China). The investigators also determined serum Abs stability, performed analysis of interfering substances and antigen absorption tests.
The scientists reported that the HISCL system detected specific serum NY-ESO-1/XAGE1 Abs, where levels in ELISA and HISCL were highly correlated. The Ab levels in HISCL were stable at four temperatures, five freeze/thaw cycles, and long-term storage; the levels were not interfered by common blood components. The Abs levels in 15 NSCLC responders to anti-PD-1 monotherapy were significantly higher than those in non-responders and healthy donors. The AUROC was the highest (0.91) in combinatory prediction with NY-ESO-1/XAGE1 Abs.
The authors concluded that they had developed a fully automated immunoassay system, HISCL, measuring serum NY-ESO-1/XAGE1 Abs that can predict clinical benefits with anti-PD-1 monotherapy in NSCLC. Their serum biomarkers measured using HISCL are clinically meaningful, as the serum Abs obtained noninvasively were relatively stable at various conditions and could be measured easily and rapidly. The study was published on April, 15, 2021 in the journal Clinica Chimica Acta.
Related Links:
Kawasaki Medical School
Sysmex
GL Biochemistry
Notably, anti-programmed cell death-1 (PD-1) and anti-PD-ligand1 (PD-L1) antibodies (Abs) as immune-checkpoint inhibitors prolong overall survival in non-small-cell lung cancer (NSCLC), which accounts for approximately 80% of lung cancer. However, clinical benefits with anti-PD-1/PD-L1 monotherapy are limited with only 20%–30% overall response rate.
Oncologists at the Kawasaki Medical School, Okayama, Japan and their colleagues obtained sera from advanced NSCLC patients, who received anti-PD-1 monotherapy as standard therapy in a first-line or later setting. Sera were collected within two months before anti-PD-1 monotherapy and were serially done after anti-PD-1 therapy, then frozen and stored at −80 °C until use. ESO-1 and XAGE1 antigen in tumor tissues were immunohistochemically stained in a previous study.
The team developed a fully automated detection system for NY-ESO-1/XAGE1 Abs using an HISCL series (Sysmex, Kobe, Japan), which performs a chemiluminescent sandwich immunoassay. Sera were diluted 400 times with appropriate solution and reacted with magnetic beads coated with recombinant NY-ESO-1 protein or synthetic XAGE1 peptide (GL Biochemistry, Shanghai, China). The investigators also determined serum Abs stability, performed analysis of interfering substances and antigen absorption tests.
The scientists reported that the HISCL system detected specific serum NY-ESO-1/XAGE1 Abs, where levels in ELISA and HISCL were highly correlated. The Ab levels in HISCL were stable at four temperatures, five freeze/thaw cycles, and long-term storage; the levels were not interfered by common blood components. The Abs levels in 15 NSCLC responders to anti-PD-1 monotherapy were significantly higher than those in non-responders and healthy donors. The AUROC was the highest (0.91) in combinatory prediction with NY-ESO-1/XAGE1 Abs.
The authors concluded that they had developed a fully automated immunoassay system, HISCL, measuring serum NY-ESO-1/XAGE1 Abs that can predict clinical benefits with anti-PD-1 monotherapy in NSCLC. Their serum biomarkers measured using HISCL are clinically meaningful, as the serum Abs obtained noninvasively were relatively stable at various conditions and could be measured easily and rapidly. The study was published on April, 15, 2021 in the journal Clinica Chimica Acta.
Related Links:
Kawasaki Medical School
Sysmex
GL Biochemistry
Latest Pathology News
- Spit Test More Accurate at Identifying Future Prostate Cancer Risk
- DNA Nanotechnology Boosts Sensitivity of Test Strips
- Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
- New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
- "Metal Detector" Algorithm Hunts Down Vulnerable Tumors
- Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
- Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
- AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
- AI Model Predicts Patient Response to Bladder Cancer Treatment
- New Laser-Based Method to Accelerate Cancer Diagnosis
- New AI Model Predicts Gene Variants’ Effects on Specific Diseases
- Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
- Pre-Analytical Conditions Influence Cell-Free MicroRNA Stability in Blood Plasma Samples
- 3D Cell Culture System Could Revolutionize Cancer Diagnostics
- Painless Technique Measures Glucose Concentrations in Solution and Tissue Via Sound Waves
- Skin-Based Test to Improve Diagnosis of Rare, Debilitating Neurodegenerative Disease
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Simple Blood Test Improves Heart Attack and Stroke Risk Prediction
Troponin is a protein found in heart muscle cells that is released into the bloodstream when the heart is damaged. High-sensitivity troponin blood tests are commonly used in hospitals to diagnose heart... Read more
Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
New medications for Alzheimer’s disease, the most common form of dementia, are now becoming available. These treatments, known as “amyloid antibodies,” work by promoting the removal of small deposits from... Read more
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Spit Test More Accurate at Identifying Future Prostate Cancer Risk
Currently, blood tests that measure the level of a protein called prostate-specific antigen (PSA) are commonly used to identify men at higher risk for prostate cancer. This test is typically used based... Read more
DNA Nanotechnology Boosts Sensitivity of Test Strips
Since the Covid-19 pandemic, most people have become familiar with paper-based rapid test strips, also known as lateral flow immunoassays (LFIAs). These tests are used to quickly detect biomarkers that... Read more
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more