LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

A Rapid Metabolomic Test for Early Diagnosis of Myocardial Infarction

By LabMedica International staff writers
Posted on 03 May 2021
Print article
Image: A myocardial infarction (MI), commonly known as a heart attack, occurs when blood flow decreases or stops to a part of the heart, causing damage to the heart muscle (Photo courtesy of Wikimedia Commons)
Image: A myocardial infarction (MI), commonly known as a heart attack, occurs when blood flow decreases or stops to a part of the heart, causing damage to the heart muscle (Photo courtesy of Wikimedia Commons)
A metabolomic platform with GC/MS (gas chromatography–mass spectrometry) and LC/MS (liquid chromatography–mass spectrometry) instrumentation has been developed to profile plasma metabolites of patients with chest pain for early detection of myocardial infarction (MI).

Investigators at Nanjing Medical University (People’s Republic of China) were working to develop a simple blood test to aid clinicians in diagnosing a heart attack with a rapid, noninvasive assay method.

To this end, they analyzed plasma metabolites in MI and non-MI chest pain cases to identify markers for diagnosis of MI based on metabolomics. Non-MI cardiac chest pain cases included unstable angina (UA), myocarditis, and valvular heart diseases. A total of 230 volunteers were recruited, consisting of 146 chest pain patients admitted with suspected MI (85 MIs and 61 non-MI chest pain cases) and 84 control individuals. Blood samples from all suspected MI cases were collected not longer than six hours after the onset of chest pain. Gas chromatography–mass spectrometry and liquid chromatography–mass spectrometry were applied to identify and quantify the plasma metabolites.

Results revealed that metabolites belonging to pyrimidine, methionine, and arginine metabolism were elevated in MI plasma samples. Specifically, deoxyuridine (dU), homoserine, and methionine were identified as potential markers for distinguishing MI cases from other cardiac chest pain cases after the onset of chest pains. Individuals with high plasma abundance of dU, homoserine, or methionine were also found to have increased risk of MI.

"We analyzed circulating metabolites in blood plasma samples from cardiac chest pain patients, including heart attack cases and other cardiac chest pain cases, to identify potential markers for heart attack diagnosis and early warning," said contributing author Dr. Xiangqing Kong, a senior researcher at Nanjing Medical University. "Such markers could be helpful in confirming heart attack in a timely manner when angiography is unavailable."

The identification of metabolites useful for early diagnosis of MI was described in the April 23, 2021, online edition of the journal Frontiers in Cardiovascular Medicine.

Related Links:
Nanjing Medical University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: The new AI tool can help beat brain tumors (Photo courtesy of Crystal Light/Shutterstock)

New AI Tool Classifies Brain Tumors More Quickly and Accurately

Precision in diagnosing and categorizing tumors is essential for delivering effective treatment to patients. Currently, the gold standard for identifying various types of brain tumors involves DNA methylation-based... Read more