A Method for Accurately Assessing the Latent Virus Reservoir in Chronic HIV Patients
By LabMedica International staff writers Posted on 20 Apr 2021 |

Image: HIV assembling on the surface of an infected macrophage. The HIV virions have been marked with a green fluorescent tag and then viewed under a fluorescent microscope (Photo courtesy of Wikimedia Commons)
A modified version of the PCR test can determine the quantity and quality of inactive human immunodeficiency virus (HIV) in the genes of individuals suffering from chronic HIV.
While HIV is not curable, antiretroviral therapy drugs (ARTs) effectively suppress the HIV virus to undetectable levels. Nonetheless, a latent HIV reservoir persists due to HIV's integration into the host DNA, specifically in the chromosomes of T lymphocytes and macrophages. Quantifying this replication-competent HIV reservoir is essential for evaluating prognostic and curative strategies.
Currently used viral outgrowth assays (VOAs) underestimate the reservoir because they fail to induce all replication-competent proviruses. Single- or double-region HIV DNA assays overestimate it because they fail to exclude many defective proviruses.
To correct for the over and under estimation of the latent HIV reservoir, investigators at the University of Washington (Seattle, USA) designed two triplex droplet digital PCR (ddPCR) assays, each with two unique targets and one in common, and normalized the results to PCR-based T-cell counts.
The classical PCR test carries out one reaction per single sample. The digital PCR (dPCR) method also carries out a single reaction within a sample, however the sample is separated into a large number of partitions and the reaction is carried out in each partition individually. This separation allows a more reliable collection and sensitive measurement of nucleic acid amounts. The dPCR method has been demonstrated as useful for studying variations in gene sequences - such as copy number variants and point mutations - and it is routinely used for clonal amplification of samples for next-generation sequencing.
Droplet digital PCR (ddPCR) is a variation of dPCR in which a 20 microliter sample reaction including assay primers and either Taqman probes or an intercalating dye, is divided into about 20,000 nanoliter-sized oil droplets through a water-oil emulsion technique, thermocycled to endpoint in a 96-well PCR plate, and fluorescence amplitude read for all droplets in each sample well in a droplet flow cytometer.
A ddPCR assay protocol reported in 2019 probed two regions of the HIV-1 genome within each droplet. For the current study, the investigators used two three-region (triplex) ddPCR assays to develop a five-region test (one overlapping region allowed inter-assay quality control). They referred to triple-positive ddPCR droplets as “potentially intact.” By combining the two parallel triplex assays, they could confidently quantify truly intact HIV-1 viral genomes. As a further enhancement, they adapted a multiplexed ddPCR assay specifically quantifying T-cells to accurately normalize to the number of HIV target cells interrogated. This additional step was especially useful for tissue biopsies, because, in contrast to blood, cell populations in tissues were difficult to isolate and purify.
Results obtained during this study revealed that both HIV ddPCR assays were specific, sensitive, and reproducible. Together, they estimated the number of proviruses containing all five primer-probe regions. The five-target results were on average 12.1-fold higher than and correlated with paired quantitative VOA but estimated a markedly smaller reservoir than previous DNA assays.
"Our laboratory test is a simpler way to quantify the reservoir of intact viruses," said senior author Dr. Florian Hladik, research professor of obstetrics and gynecology at the University of Washington. "I can see a patient going to a doctor and adding this to the list of questions they might ask. Now they ask about their viral load and T-cell count. I hope in the future they may be able to ask how large their HIV reservoir might be. What gets me excited is that one day, this number may tell them how long it will take to entirely eliminate HIV from their body."
The study was published in the April 12, 2021, online edition of the journal Cell Reports Medicine.
Related Links:
University of Washington
While HIV is not curable, antiretroviral therapy drugs (ARTs) effectively suppress the HIV virus to undetectable levels. Nonetheless, a latent HIV reservoir persists due to HIV's integration into the host DNA, specifically in the chromosomes of T lymphocytes and macrophages. Quantifying this replication-competent HIV reservoir is essential for evaluating prognostic and curative strategies.
Currently used viral outgrowth assays (VOAs) underestimate the reservoir because they fail to induce all replication-competent proviruses. Single- or double-region HIV DNA assays overestimate it because they fail to exclude many defective proviruses.
To correct for the over and under estimation of the latent HIV reservoir, investigators at the University of Washington (Seattle, USA) designed two triplex droplet digital PCR (ddPCR) assays, each with two unique targets and one in common, and normalized the results to PCR-based T-cell counts.
The classical PCR test carries out one reaction per single sample. The digital PCR (dPCR) method also carries out a single reaction within a sample, however the sample is separated into a large number of partitions and the reaction is carried out in each partition individually. This separation allows a more reliable collection and sensitive measurement of nucleic acid amounts. The dPCR method has been demonstrated as useful for studying variations in gene sequences - such as copy number variants and point mutations - and it is routinely used for clonal amplification of samples for next-generation sequencing.
Droplet digital PCR (ddPCR) is a variation of dPCR in which a 20 microliter sample reaction including assay primers and either Taqman probes or an intercalating dye, is divided into about 20,000 nanoliter-sized oil droplets through a water-oil emulsion technique, thermocycled to endpoint in a 96-well PCR plate, and fluorescence amplitude read for all droplets in each sample well in a droplet flow cytometer.
A ddPCR assay protocol reported in 2019 probed two regions of the HIV-1 genome within each droplet. For the current study, the investigators used two three-region (triplex) ddPCR assays to develop a five-region test (one overlapping region allowed inter-assay quality control). They referred to triple-positive ddPCR droplets as “potentially intact.” By combining the two parallel triplex assays, they could confidently quantify truly intact HIV-1 viral genomes. As a further enhancement, they adapted a multiplexed ddPCR assay specifically quantifying T-cells to accurately normalize to the number of HIV target cells interrogated. This additional step was especially useful for tissue biopsies, because, in contrast to blood, cell populations in tissues were difficult to isolate and purify.
Results obtained during this study revealed that both HIV ddPCR assays were specific, sensitive, and reproducible. Together, they estimated the number of proviruses containing all five primer-probe regions. The five-target results were on average 12.1-fold higher than and correlated with paired quantitative VOA but estimated a markedly smaller reservoir than previous DNA assays.
"Our laboratory test is a simpler way to quantify the reservoir of intact viruses," said senior author Dr. Florian Hladik, research professor of obstetrics and gynecology at the University of Washington. "I can see a patient going to a doctor and adding this to the list of questions they might ask. Now they ask about their viral load and T-cell count. I hope in the future they may be able to ask how large their HIV reservoir might be. What gets me excited is that one day, this number may tell them how long it will take to entirely eliminate HIV from their body."
The study was published in the April 12, 2021, online edition of the journal Cell Reports Medicine.
Related Links:
University of Washington
Latest Molecular Diagnostics News
- D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
- New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
- Chemiluminescence Immunoassays Support Diagnosis of Alzheimer’s Disease
- Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury
- Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression
- Simple DNA PCR-Based Lab Test to Enable Personalized Treatment of Bacterial Vaginosis
- Rapid Diagnostic Test to Halt Mother-To-Child Hepatitis B Transmission
- Simple Urine Test Could Help Patients Avoid Invasive Scans for Kidney Cancer
- New Bowel Cancer Blood Test to Improve Early Detection
- Refined Test Improves Parkinson’s Disease Diagnosis
- New Method Rapidly Diagnoses CVD Risk Via Molecular Blood Screening
- Blood Test Shows Promise for Early Detection of Dementia
- CRISPR-Based Diagnostic Test Detects Pathogens in Blood Without Amplification
- Portable Blood-Based Device Detects Colon Cancer
- New DNA Test Diagnoses Bacterial Infections Faster and More Accurately
- Innovative Bio-Detection Platform Improves Early Cancer Screening and Monitoring
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read moreCerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
In recent years, cancer immunotherapy has emerged as a promising approach where the patient's immune system is harnessed to fight cancer. One form of immunotherapy, called CAR-T-cell therapy, involves... Read more
New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
Preterm infants are particularly vulnerable due to their organs still undergoing development, which can lead to difficulties in breathing, eating, and regulating body temperature. This is especially true... Read more
Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read moreMicrobiology
view channel
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read morePathology
view channel
AI Model Predicts Patient Response to Bladder Cancer Treatment
Each year in the United States, around 81,000 new cases of bladder cancer are diagnosed, leading to approximately 17,000 deaths annually. Muscle-invasive bladder cancer (MIBC) is a severe form of bladder... Read more
New Laser-Based Method to Accelerate Cancer Diagnosis
Researchers have developed a method to improve cancer diagnostics and other diseases. Collagen, a key structural protein, plays various roles in cell activity. A novel multidisciplinary study published... Read more
New AI Model Predicts Gene Variants’ Effects on Specific Diseases
In recent years, artificial intelligence (AI) has greatly enhanced our ability to identify a vast number of genetic variants in increasingly larger populations. However, up to half of these variants are... Read more
Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
Coeliac disease is an autoimmune disorder triggered by the consumption of gluten, causing symptoms such as stomach cramps, diarrhea, skin rashes, weight loss, fatigue, and anemia. Due to the wide variation... Read moreTechnology
view channel
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Tecan Acquires ELISA Immunoassay Assets from Revvity's Cisbio Bioassays
Tecan Group (Männedorf, Switzerland) has entered into an agreement to acquire certain assets relating to key ELISA immunoassay products from Cisbio Bioassays SAS (Codolet, France), a subsidiary of the... Read more