LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Leukocyte Epigenomics and Artificial Intelligence Predict Late-Onset Alzheimer’s Disease

By LabMedica International staff writers
Posted on 12 Apr 2021
Print article
Image: The EZ DNA Methylation-Direct Kit (Photo courtesy of Zymo Research)
Image: The EZ DNA Methylation-Direct Kit (Photo courtesy of Zymo Research)
Alzheimer’s Disease (AD) is the most common form of age-related dementia, accounting for 60%–80% of such cases. The disorder causes a wide range of significant mental and physical disabilities, with profound behavioral changes and progressive impairment of social skills.

AD is a complex disorder influenced by environmental and genetic factors. Genome-wide association studies (GWAS) have identified several late-onset AD (LOAD)-associated risk loci proliferation in peripheral blood leukocytes including in T-lymphocytes, B-lymphocytes, polymorphonuclear leucocytes, monocytes, and macrophages have been reported.

A team of Medical Scientists mainly from the Oakland University-William Beaumont School of Medicine (Royal Oak, MI, USA) evaluated the utility of leucocyte epigenomic-biomarkers for Alzheimer’s Disease (AD) detection and elucidated its molecular pathogeneses. The team studied blood samples from two dozen Alzheimer's disease patients and the same number of cognitively health controls.

Approximately 500 ng of genomic DNA was extracted from each of the 48 samples, which subsequently were bisulfite converted using the EZ DNA Methylation-Direct Kit (Zymo Research, Orange, CA, USA). They performed genome-wide DNA methylation analysis of the blood samples using Infinium MethylationEPIC BeadChip array (Illumina, San Diego, CA, USA). Artificial Intelligence (AI) analysis was performed using a combination of CpG sites from different genes. They also used six artificial intelligences approaches to analyze their dataset, including support vector machine, random forest, and deep learning. Deep learning is a branch of machine learning that aims to mimic the neural networks of animal brains.

The team reported that each of the AI approaches could predict Alzheimer's disease with high accuracy, yielding areas under the curve (AUC) of at least 0.93. Deep learning further improved upon that with an AUC of 0.99 and a sensitivity and specificity of 97% using intragenic markers. Similar results could be reached with intergenic markers, as well. The group noted that the addition of conventional clinical predictors or mental state analyses did not further improve performance. The analysis highlighted a number of genes and pathways known to be disrupted in Alzheimer's disease. Epigenetically altered genes included, for instance, CR1L and CTSV, which are involved in the morphology of the cerebral cortex, as well as S1PR1 and LTB4R, which are involved in inflammatory response.

Ray O. Bahado-Singh, MD, a Professor of Obstetrics and Gynecology and lead author of the study, said, “We found that the genetic analysis accurately predicted the absence or presence of Alzheimer's, allowing us to read what is going on in the brain through the blood. The results also gave us a readout of the abnormalities that are causing Alzheimer's disease. This has future promise for developing targeted treatment to interrupt the disease process.” The study was published on March 31, 2021 in the journal PLOS ONE.

Related Links:
Oakland University-William Beaumont School of Medicine
Zymo Research
Illumina


Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Coagulation Analyzer
CS-2400
New
Respiratory Bacterial Panel
Real Respiratory Bacterial Panel 2

Print article

Channels

Clinical Chemistry

view channel
Image: The research team has developed the uCR-Chip device to enhance kidney function testing (Photo courtesy of University of Manitoba)

Low-Cost Portable Screening Test to Transform Kidney Disease Detection

Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.