Leukocyte Epigenomics and Artificial Intelligence Predict Late-Onset Alzheimer’s Disease
By LabMedica International staff writers Posted on 12 Apr 2021 |

Image: The EZ DNA Methylation-Direct Kit (Photo courtesy of Zymo Research)
Alzheimer’s Disease (AD) is the most common form of age-related dementia, accounting for 60%–80% of such cases. The disorder causes a wide range of significant mental and physical disabilities, with profound behavioral changes and progressive impairment of social skills.
AD is a complex disorder influenced by environmental and genetic factors. Genome-wide association studies (GWAS) have identified several late-onset AD (LOAD)-associated risk loci proliferation in peripheral blood leukocytes including in T-lymphocytes, B-lymphocytes, polymorphonuclear leucocytes, monocytes, and macrophages have been reported.
A team of Medical Scientists mainly from the Oakland University-William Beaumont School of Medicine (Royal Oak, MI, USA) evaluated the utility of leucocyte epigenomic-biomarkers for Alzheimer’s Disease (AD) detection and elucidated its molecular pathogeneses. The team studied blood samples from two dozen Alzheimer's disease patients and the same number of cognitively health controls.
Approximately 500 ng of genomic DNA was extracted from each of the 48 samples, which subsequently were bisulfite converted using the EZ DNA Methylation-Direct Kit (Zymo Research, Orange, CA, USA). They performed genome-wide DNA methylation analysis of the blood samples using Infinium MethylationEPIC BeadChip array (Illumina, San Diego, CA, USA). Artificial Intelligence (AI) analysis was performed using a combination of CpG sites from different genes. They also used six artificial intelligences approaches to analyze their dataset, including support vector machine, random forest, and deep learning. Deep learning is a branch of machine learning that aims to mimic the neural networks of animal brains.
The team reported that each of the AI approaches could predict Alzheimer's disease with high accuracy, yielding areas under the curve (AUC) of at least 0.93. Deep learning further improved upon that with an AUC of 0.99 and a sensitivity and specificity of 97% using intragenic markers. Similar results could be reached with intergenic markers, as well. The group noted that the addition of conventional clinical predictors or mental state analyses did not further improve performance. The analysis highlighted a number of genes and pathways known to be disrupted in Alzheimer's disease. Epigenetically altered genes included, for instance, CR1L and CTSV, which are involved in the morphology of the cerebral cortex, as well as S1PR1 and LTB4R, which are involved in inflammatory response.
Ray O. Bahado-Singh, MD, a Professor of Obstetrics and Gynecology and lead author of the study, said, “We found that the genetic analysis accurately predicted the absence or presence of Alzheimer's, allowing us to read what is going on in the brain through the blood. The results also gave us a readout of the abnormalities that are causing Alzheimer's disease. This has future promise for developing targeted treatment to interrupt the disease process.” The study was published on March 31, 2021 in the journal PLOS ONE.
Related Links:
Oakland University-William Beaumont School of Medicine
Zymo Research
Illumina
AD is a complex disorder influenced by environmental and genetic factors. Genome-wide association studies (GWAS) have identified several late-onset AD (LOAD)-associated risk loci proliferation in peripheral blood leukocytes including in T-lymphocytes, B-lymphocytes, polymorphonuclear leucocytes, monocytes, and macrophages have been reported.
A team of Medical Scientists mainly from the Oakland University-William Beaumont School of Medicine (Royal Oak, MI, USA) evaluated the utility of leucocyte epigenomic-biomarkers for Alzheimer’s Disease (AD) detection and elucidated its molecular pathogeneses. The team studied blood samples from two dozen Alzheimer's disease patients and the same number of cognitively health controls.
Approximately 500 ng of genomic DNA was extracted from each of the 48 samples, which subsequently were bisulfite converted using the EZ DNA Methylation-Direct Kit (Zymo Research, Orange, CA, USA). They performed genome-wide DNA methylation analysis of the blood samples using Infinium MethylationEPIC BeadChip array (Illumina, San Diego, CA, USA). Artificial Intelligence (AI) analysis was performed using a combination of CpG sites from different genes. They also used six artificial intelligences approaches to analyze their dataset, including support vector machine, random forest, and deep learning. Deep learning is a branch of machine learning that aims to mimic the neural networks of animal brains.
The team reported that each of the AI approaches could predict Alzheimer's disease with high accuracy, yielding areas under the curve (AUC) of at least 0.93. Deep learning further improved upon that with an AUC of 0.99 and a sensitivity and specificity of 97% using intragenic markers. Similar results could be reached with intergenic markers, as well. The group noted that the addition of conventional clinical predictors or mental state analyses did not further improve performance. The analysis highlighted a number of genes and pathways known to be disrupted in Alzheimer's disease. Epigenetically altered genes included, for instance, CR1L and CTSV, which are involved in the morphology of the cerebral cortex, as well as S1PR1 and LTB4R, which are involved in inflammatory response.
Ray O. Bahado-Singh, MD, a Professor of Obstetrics and Gynecology and lead author of the study, said, “We found that the genetic analysis accurately predicted the absence or presence of Alzheimer's, allowing us to read what is going on in the brain through the blood. The results also gave us a readout of the abnormalities that are causing Alzheimer's disease. This has future promise for developing targeted treatment to interrupt the disease process.” The study was published on March 31, 2021 in the journal PLOS ONE.
Related Links:
Oakland University-William Beaumont School of Medicine
Zymo Research
Illumina
Latest Molecular Diagnostics News
- Novel Autoantibody Against DAGLA Discovered in Cerebellitis
- Blood Test Could Identify Patients at Risk for Severe Scleroderma
- Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
- Rapid Blood Test Identifies Pre-Symptomatic Patients with Parkinson’s Disease
- Blood Test for Early Alzheimer's Detection Achieves Over 90% Accuracy
- RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms
- First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
- Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
- Novel Point-of-Care Technology Delivers Accurate HIV Results in Minutes
- Blood Test Rules Out Future Dementia Risk
- D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
- New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
- Chemiluminescence Immunoassays Support Diagnosis of Alzheimer’s Disease
- Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury
- Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression
- Simple DNA PCR-Based Lab Test to Enable Personalized Treatment of Bacterial Vaginosis
Channels
Clinical Chemistry
view channel
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more
New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
"Liquid biopsy" technology, which relies on blood tests for early cancer detection and monitoring cancer burden in patients, has the potential to transform cancer care. However, detecting the mutational... Read more
"Metal Detector" Algorithm Hunts Down Vulnerable Tumors
Scientists have developed an algorithm capable of functioning as a "metal detector" to identify vulnerable tumors, marking a significant advancement in personalized cancer treatment. This breakthrough... Read more
Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
Pancreatic cancer is often asymptomatic in its early stages, making it difficult to detect until it has progressed. Consequently, only 15% of pancreatic cancers are diagnosed early enough to allow for... Read moreTechnology
view channel
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more