Advances in High-Tech Methods for Cervical Cancer Screening
|
By LabMedica International staff writers Posted on 06 Apr 2021 |

Image: Artificial intelligence monitoring for HPV (AIM-HPV) device for point-of-care HPV testing (Photo courtesy of Ismail Degani, Center for Systems Biology, Massachusetts General Hospital)
Cervical cancer, which is almost always caused by human papillomavirus (HPV), is the world's fourth-most common cancer, with more than 500,000 cases diagnosed annually.
The Papanicolaou (Pap) test, introduced in the 1940s by George Papanicolaou, helps pathologists examine the morphology of exfoliated cervical cells. About 80% of cervical cancer can be prevented by well-organized, high-quality screening programs using Pap smears with three- to four‐year screening intervals. However, this approach has yet to similarly impact developing countries. Of the approximately 311,000 annual deaths from cervical cancer, more than 85% of these occur in low- and middle-income countries (LMICs). An effective cytology-based screening program necessitates high-quality cytology laboratories, properly trained personnel, and repeated screening at regular intervals due to the low sensitivity of a single Pap test; such ingredients are still not achievable across many LMICs.
In this regard, new point-of-care (POC) technologies have been developed to provide test results in real time, improve the efficiency of techniques, and increase screening for cervical cancer. A recent review article prepared by investigators at Massachusetts General Hospital (Boston, USA) examined and discussed some of the latest innovations. The review highlighted how emerging advances in nanotechnologies and machine learning could (1) complement or supplant existing methods of cervical cancer screening and (2) directly circumvent existing screening obstacles in LMICs.
Among the newest developments described in the review were:
1. Multiplexed fluorescence platform for detecting antibodies to HPV 16 E7.
The development of HPV-related cancers is associated with IgG antibodies, primarily to the oncoproteins E6 and E7. The antibodies to HPV E7 were more frequently detected in women with invasive cervical cancer (30.3%) than women with CIN 2/3 (19.5%) and CIN 0/1 (6.6%). A POC multiplexed fluorescence screening platform has been explored for detecting antibodies to HPV 16 E7 oncoprotein in patient plasma. Inexpensive interference filters and readout electronics were used to help leverage time integration of output signals for improved accuracy.
2. Enzyme-assisted nanocomplexes for visual identification of nucleic acids. (enVision) platform. A molecular platform named enVision (enzyme-assisted nanocomplexes for visual identification of nucleic acids) purportedly enables visual and modular detection of HPV nucleic acids (both DNA and RNA) without target nucleic acid amplification. Detection occurs through three functional steps: target recognition, target-independent signal enhancement, and visual detection.
3. AmpFire Multiplex HPV Assay. The AmpFire Multiplex HPV Assay developed by Atila Biosystems (Mountain View, CA, USA) detects 15 high-risk HPV genotypes while simultaneously genotyping HPV 16 and HPV 18 in a single tube. The multiplex assay uses sequence-specific primers to target HPV genotypes of interest and amplify their respective sequences in an isothermal amplification system. Once amplified, specific molecular beacon probes are bound to the products to create a detectable fluorescence signal. The key component that separates this assay from other commercial ones is that the tests detect HPV in formalin-fixed, paraffin-embedded (FFPE) samples.
4. Artificial Intelligence Monitoring for HPV (AIM-HPV)
In addition to advancing hardware technologies, an Artificial Intelligence Monitoring for HPV (AIM-HPV) platform leverages deep learning tactics to facilitate POC analyses. Here, digital microholography readily produces high-quality image data, even at sub-micron levels, through a simple, lens-free optical system. The platform detects target nucleic acids within cervical brushings introduced into a disposable DNA extraction kit.
Senior author of the review Dr. Caesar Castro, associate professor of oncology at Massachusetts General Hospital, said, "The Pap smear has done wonders in terms of reducing mortality from a cancer that is very treatable when caught early and almost invariably fatal when it is caught late. And it is not even a great test. Part of its imperfection is that there is subjectivity to it. The trained eye is the limiting step in the process. The untrained eye, or relatively untrained eye, can miss cancers."
The review of advances in cervical cancer detection was published in the March 30, 2021, online edition of the journal Biophysics Reviews.
Related Links:
Massachusetts General Hospital
Atila Biosystems
The Papanicolaou (Pap) test, introduced in the 1940s by George Papanicolaou, helps pathologists examine the morphology of exfoliated cervical cells. About 80% of cervical cancer can be prevented by well-organized, high-quality screening programs using Pap smears with three- to four‐year screening intervals. However, this approach has yet to similarly impact developing countries. Of the approximately 311,000 annual deaths from cervical cancer, more than 85% of these occur in low- and middle-income countries (LMICs). An effective cytology-based screening program necessitates high-quality cytology laboratories, properly trained personnel, and repeated screening at regular intervals due to the low sensitivity of a single Pap test; such ingredients are still not achievable across many LMICs.
In this regard, new point-of-care (POC) technologies have been developed to provide test results in real time, improve the efficiency of techniques, and increase screening for cervical cancer. A recent review article prepared by investigators at Massachusetts General Hospital (Boston, USA) examined and discussed some of the latest innovations. The review highlighted how emerging advances in nanotechnologies and machine learning could (1) complement or supplant existing methods of cervical cancer screening and (2) directly circumvent existing screening obstacles in LMICs.
Among the newest developments described in the review were:
1. Multiplexed fluorescence platform for detecting antibodies to HPV 16 E7.
The development of HPV-related cancers is associated with IgG antibodies, primarily to the oncoproteins E6 and E7. The antibodies to HPV E7 were more frequently detected in women with invasive cervical cancer (30.3%) than women with CIN 2/3 (19.5%) and CIN 0/1 (6.6%). A POC multiplexed fluorescence screening platform has been explored for detecting antibodies to HPV 16 E7 oncoprotein in patient plasma. Inexpensive interference filters and readout electronics were used to help leverage time integration of output signals for improved accuracy.
2. Enzyme-assisted nanocomplexes for visual identification of nucleic acids. (enVision) platform. A molecular platform named enVision (enzyme-assisted nanocomplexes for visual identification of nucleic acids) purportedly enables visual and modular detection of HPV nucleic acids (both DNA and RNA) without target nucleic acid amplification. Detection occurs through three functional steps: target recognition, target-independent signal enhancement, and visual detection.
3. AmpFire Multiplex HPV Assay. The AmpFire Multiplex HPV Assay developed by Atila Biosystems (Mountain View, CA, USA) detects 15 high-risk HPV genotypes while simultaneously genotyping HPV 16 and HPV 18 in a single tube. The multiplex assay uses sequence-specific primers to target HPV genotypes of interest and amplify their respective sequences in an isothermal amplification system. Once amplified, specific molecular beacon probes are bound to the products to create a detectable fluorescence signal. The key component that separates this assay from other commercial ones is that the tests detect HPV in formalin-fixed, paraffin-embedded (FFPE) samples.
4. Artificial Intelligence Monitoring for HPV (AIM-HPV)
In addition to advancing hardware technologies, an Artificial Intelligence Monitoring for HPV (AIM-HPV) platform leverages deep learning tactics to facilitate POC analyses. Here, digital microholography readily produces high-quality image data, even at sub-micron levels, through a simple, lens-free optical system. The platform detects target nucleic acids within cervical brushings introduced into a disposable DNA extraction kit.
Senior author of the review Dr. Caesar Castro, associate professor of oncology at Massachusetts General Hospital, said, "The Pap smear has done wonders in terms of reducing mortality from a cancer that is very treatable when caught early and almost invariably fatal when it is caught late. And it is not even a great test. Part of its imperfection is that there is subjectivity to it. The trained eye is the limiting step in the process. The untrained eye, or relatively untrained eye, can miss cancers."
The review of advances in cervical cancer detection was published in the March 30, 2021, online edition of the journal Biophysics Reviews.
Related Links:
Massachusetts General Hospital
Atila Biosystems
Latest Molecular Diagnostics News
- Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
- Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
- Two-in-One DNA Analysis Improves Diagnostic Accuracy While Saving Time and Costs
- “Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
- New Tool Maps Chromosome Shifts in Cancer Cells to Predict Tumor Evolution
- Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
- Newly-Identified Parkinson’s Biomarkers to Enable Early Diagnosis Via Blood Tests
- New Blood Test Could Detect Pancreatic Cancer at More Treatable Stage
- Liquid Biopsy Could Replace Surgical Biopsy for Diagnosing Primary Central Nervous Lymphoma
- New Tool Reveals Hidden Metabolic Weakness in Blood Cancers
- World's First Blood Test Distinguishes Between Benign and Cancerous Lung Nodules
- Rapid Test Uses Mobile Phone to Identify Severe Imported Malaria Within Minutes
- Gut Microbiome Signatures Predict Long-Term Outcomes in Acute Pancreatitis
- Blood Test Promises Faster Answers for Deadly Fungal Infections
- Blood Test Could Detect Infection Exposure History
- Urine-Based MRD Test Tracks Response to Bladder Cancer Surgery
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







