PCR Method Identifies Microsatellite Instability in Tumor-Derived Samples
By LabMedica International staff writers Posted on 31 Mar 2021 |

Image: Schematic diagram for the identification of MSI status and tracing MSI+ tumors in plasma using Alu-PCR-MSI tracer (Photo courtesy of Dana-Farber Cancer Institute)
Sensitive detection of microsatellite instability (MSI) in tissue or liquid biopsies using next generation sequencing (NGS) has growing prognostic and predictive applications in cancer. However, the complexities of NGS make it cumbersome as compared to established multiplex-PCR detection of MSI.
Tumors with MSI accumulate high numbers of somatic microsatellite (MS) insertions or deletions (indels), due to a loss of normal mismatch repair (MMR) ability. High levels of MSI are predictive for colorectal cancer (CRC) therapy outcome in chemotherapy and immunotherapy and has been associated with distinct characteristics and favorable results including better prognosis, a higher 5-year survival, and lesser metastasis.
Radiation Oncologists at the Dana-Farber Cancer Institute (Boston, MA, USA) and their colleagues obtained snap-frozen colon adenocarcinoma stage II/III and paired normal tissue biopsies from treatment-naïve patients were obtained from the Massachusetts General Hospital Tumor Bank and gDNA was extracted using the Blood and Tissue kit (Qiagen, Hilden, Germany). Plasma was acquired from healthy volunteers and from stage I/II colon adenocarcinoma treatment-naïve patients. cfDNA was isolated using Qiagen’s QIAamp Circulating Nucleic Acids Kit. The concentration of isolated DNA was quantified on a Qubit 3.0 fluorometer using dsDNA HS assay kit (Thermo Fisher Scientific, Waltham, MA, USA).
To detect MSI the team developed a method called inter-Alu-PCR followed by targeted NGS that combines the practical advantages of multiplexed-PCR with the breadth of information provided by NGS. Inter-Alu-PCR employs poly-adenine repeats of variable length present in every Alu element and provides a massively-parallel, rapid approach to capture poly-A-rich genomic fractions within short 80–150bp amplicons generated from adjacent Alu-sequences. A custom-made software analysis tool, MSI-tracer, enables Alu-associated MSI detection from tissue biopsies or MSI-tracing at low-levels in circulating-DNA.
To establish the method's limit of detection in tissue samples, the scientists tested multiple scenarios using serial dilutions of MSI-H tumor DNA from colon cancer into matched normal DNA. The team used droplet digital PCR to validate the dilution approach using tumor-specific somatic mutations such as KRAS for a subset of the mutations. When a paired normal sample was not present, the team found that that the method had a limit of detection of 0.15% to 0.5% percent for somatic indels using a low-tumor purity clinical sample. When matched normal tissue was available, inter-Alu-PCR had a somatic limit of detection between 0.05% to 0.5%.
The team also showed how inter-Alu-PCR could be potentially used to detect MSI-related poly-adenine deletions in cell-free DNA (cfDNA) from a patient's blood sample. Analyzing cfDNA from colon cancer patients and healthy samples, they saw that MSI-H patients produced a higher MSI-Tracer score compared to MSS or normal samples. Overall, the study authors found that inter-Alu-PCR could classify MSI using as low as 0.1 ng of input DNA from a patient's blood sample.
The authors concluded that the combined practical and informational advantages of inter-Alu-PCR make it a powerful and practical tool for identifying tissue MSI-status or tracing MSI-associated indels in liquid biopsies using minute amounts of starting material. The study was published on February 26, 2021 in the journal Nucleic Acids Research.
Related Links:
Dana-Farber Cancer Institute
Qiagen
Thermo Fisher Scientific
Tumors with MSI accumulate high numbers of somatic microsatellite (MS) insertions or deletions (indels), due to a loss of normal mismatch repair (MMR) ability. High levels of MSI are predictive for colorectal cancer (CRC) therapy outcome in chemotherapy and immunotherapy and has been associated with distinct characteristics and favorable results including better prognosis, a higher 5-year survival, and lesser metastasis.
Radiation Oncologists at the Dana-Farber Cancer Institute (Boston, MA, USA) and their colleagues obtained snap-frozen colon adenocarcinoma stage II/III and paired normal tissue biopsies from treatment-naïve patients were obtained from the Massachusetts General Hospital Tumor Bank and gDNA was extracted using the Blood and Tissue kit (Qiagen, Hilden, Germany). Plasma was acquired from healthy volunteers and from stage I/II colon adenocarcinoma treatment-naïve patients. cfDNA was isolated using Qiagen’s QIAamp Circulating Nucleic Acids Kit. The concentration of isolated DNA was quantified on a Qubit 3.0 fluorometer using dsDNA HS assay kit (Thermo Fisher Scientific, Waltham, MA, USA).
To detect MSI the team developed a method called inter-Alu-PCR followed by targeted NGS that combines the practical advantages of multiplexed-PCR with the breadth of information provided by NGS. Inter-Alu-PCR employs poly-adenine repeats of variable length present in every Alu element and provides a massively-parallel, rapid approach to capture poly-A-rich genomic fractions within short 80–150bp amplicons generated from adjacent Alu-sequences. A custom-made software analysis tool, MSI-tracer, enables Alu-associated MSI detection from tissue biopsies or MSI-tracing at low-levels in circulating-DNA.
To establish the method's limit of detection in tissue samples, the scientists tested multiple scenarios using serial dilutions of MSI-H tumor DNA from colon cancer into matched normal DNA. The team used droplet digital PCR to validate the dilution approach using tumor-specific somatic mutations such as KRAS for a subset of the mutations. When a paired normal sample was not present, the team found that that the method had a limit of detection of 0.15% to 0.5% percent for somatic indels using a low-tumor purity clinical sample. When matched normal tissue was available, inter-Alu-PCR had a somatic limit of detection between 0.05% to 0.5%.
The team also showed how inter-Alu-PCR could be potentially used to detect MSI-related poly-adenine deletions in cell-free DNA (cfDNA) from a patient's blood sample. Analyzing cfDNA from colon cancer patients and healthy samples, they saw that MSI-H patients produced a higher MSI-Tracer score compared to MSS or normal samples. Overall, the study authors found that inter-Alu-PCR could classify MSI using as low as 0.1 ng of input DNA from a patient's blood sample.
The authors concluded that the combined practical and informational advantages of inter-Alu-PCR make it a powerful and practical tool for identifying tissue MSI-status or tracing MSI-associated indels in liquid biopsies using minute amounts of starting material. The study was published on February 26, 2021 in the journal Nucleic Acids Research.
Related Links:
Dana-Farber Cancer Institute
Qiagen
Thermo Fisher Scientific
Latest Molecular Diagnostics News
- New Genetic Tool Analyzes Umbilical Cord Blood to Predict Future Disease
- Spinal Fluid Biomarker for Parkinson’s Disease Offers Early and Accurate Diagnosis
- Revolutionary Blood Test Detects 30 Different Types of Cancers with 98% Accuracy
- Simple Blood Test Better Predicts Heart Disease Risk
- New Blood Test Detects 12 Common Cancers Before Symptoms Appear
- Blood Test Could Predict Relapse of Autoimmune Blood Vessel Disease
- First-of-its-Kind Blood Test Detects Trauma-Related Diseases
- Key Gene Identified in Common Heart Disease Unlocks Life-Saving Diagnostic Potential
- Cheap Cell-Free DNA Based Test Accurately Predicts Preterm Birth
- RNA Blood Test Detects Cancers and Resistance to Treatment
- IL-6 Outperforms Traditional Tests for Early Sepsis Detection
- Simple Blood Test Improves Heart Attack and Stroke Risk Prediction
- Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
- Novel Autoantibody Against DAGLA Discovered in Cerebellitis
- Blood Test Could Identify Patients at Risk for Severe Scleroderma
- Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more
World’s First AI Model for Thyroid Cancer Diagnosis Achieves Over 90% Accuracy
Thyroid cancer is one of the most common cancers worldwide, and its precise management typically relies on two primary systems: (1) the 8th edition of the American Joint Committee on Cancer (AJCC) or ... Read more
Breakthrough Diagnostic Approach to Significantly Improve TB Detection
Tuberculosis (TB) remains the deadliest infectious disease globally, with 10.8 million new cases and 1.25 million deaths reported in 2023. Early detection through effective screening is crucial in identifying... Read more
Rapid, Ultra-Sensitive, PCR-Free Detection Method Makes Genetic Analysis More Accessible
Genetic testing has been an important method for detecting infectious diseases, diagnosing early-stage cancer, ensuring food safety, and analyzing environmental DNA. For a long time, polymerase chain reaction... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more