Innovative Pain-Free Microneedle Patch with Unprecedented Sensitivity Can Test for Level of Antibodies Against COVID-19
By LabMedica International staff writers Posted on 25 Jan 2021 |

Image: Innovative pain-free microneedle patch with unprecedented sensitivity (Photo courtesy of Washington University in St. Louis)
A nearly pain-free microneedle patch developed by researchers can be applied to the skin, capture a biomarker of interest and, thanks to its unprecedented sensitivity, allow clinicians to detect the presence of antibodies that signal a viral or bacterial infection, such as SARS-CoV-2.
Engineers at the McKelvey School of Engineering at Washington University in St. Louis (St. Louis, MO, USA) have developed the technology which is low cost, easy for a clinician or patients themselves to use, and could eliminate the need for a trip to the hospital just for a blood draw. In addition to the low cost and ease of use, these microneedle patches are also entirely pain-free.
Oftentimes, doctors use blood samples to check for biomarkers of disease: antibodies that signal a viral or bacterial infection, such as SARS-CoV-2; or cytokines indicative of inflammation seen in conditions such as rheumatoid arthritis and sepsis. These biomarkers aren’t just in blood, though. They can also be found in the dense liquid medium that surrounds our cells, but in low abundance that makes it difficult to be detected. Finding a biomarker using microneedle patches is similar to blood testing. But instead of using a solution to find and quantify the biomarker in blood, the microneedles directly capture it from the liquid that surrounds the cells in skin, which is called dermal interstitial fluid (ISF). Once the biomarkers have been captured, they are detected in the same way - using fluorescence to indicate their presence and quantity.
ISF is a rich source of biomolecules, densely packed with everything from neurotransmitters to cellular waste. However, to analyze biomarkers in ISF, conventional method generally requires extraction of ISF from skin. This method is difficult and usually the amount of ISF that can be obtained is not sufficient for analysis. That has been a major hurdle for developing microneedle-based biosensing technology. Another method involves direct capture of the biomarker in ISF without having to extract ISF. Like showing up to a packed concert and trying to make your way up front, the biomarker has to maneuver through a crowded, dynamic soup of ISF before reaching the microneedle in the skin tissue. Under such conditions, being able to capture enough of the biomarker to see using the traditional assay isn’t easy.
To address the issue, the team used “plasmonic-fluors,” an ultrabright fluorescence nanolabel. Compared with traditional fluorescent labels, when an assay was done on microneedle patch using plasmonic-fluor, the signal of target protein biomarkers shined about 1,400 times as bright and become detectable even when they are present at low concentrations. These patches have a host of qualities that can make a real impact on medicine, patient care and research. They would allow providers to monitor biomarkers over time, particularly important when it comes to understanding how immunity plays out in new diseases. For example, researchers working on COVID-19 vaccines who need to know if people are producing the right antibodies and for how long could use the patch to see whether a person has antibodies against COVID-19 and at what level. Also, EMTs could use a microneedle patch to test for troponin, the biomarker that indicates myocardial infarction, instead of having to get to the hospital and have blood drawn.
For people with chronic conditions that require regular monitoring, microneedle patches could eliminate unnecessary trips to the hospital, saving money, time and discomfort.
“Previously, concentrations of a biomarker had to be on the order of a few micrograms per milliliter of fluid,” Zheyu (Ryan) Wang, a graduate student in the Singamaneni lab and one of the lead authors of the paper, said. That’s far beyond the real-world physiological range. But using plasmonic-fluor, the research team was able to detect biomarkers on the order of picograms per milliliter. That’s orders of magnitude more sensitive.”
“We’ll have to determine clinical cutoffs,” that is, the range of biomarker in ISF that corresponds to a normal vs. abnormal level,” said Srikanth Singamaneni, the Lilyan & E. Lisle Hughes Professor in the Department of Mechanical Engineering & Materials Sciences. “We’ll have to determine what levels of biomarker are normal, what levels are pathological.” And his research group is working on delivery methods for long distances and harsh conditions, providing options for improving rural healthcare.
“But we don’t have to do all of this ourselves,” added Singamaneni. “Instead, the technology will be available to experts in different areas of medicine. We have created a platform technology that anyone can use,” he said. “And they can use it to find their own biomarker of interest.”
Related Links:
Washington University in St. Louis
Engineers at the McKelvey School of Engineering at Washington University in St. Louis (St. Louis, MO, USA) have developed the technology which is low cost, easy for a clinician or patients themselves to use, and could eliminate the need for a trip to the hospital just for a blood draw. In addition to the low cost and ease of use, these microneedle patches are also entirely pain-free.
Oftentimes, doctors use blood samples to check for biomarkers of disease: antibodies that signal a viral or bacterial infection, such as SARS-CoV-2; or cytokines indicative of inflammation seen in conditions such as rheumatoid arthritis and sepsis. These biomarkers aren’t just in blood, though. They can also be found in the dense liquid medium that surrounds our cells, but in low abundance that makes it difficult to be detected. Finding a biomarker using microneedle patches is similar to blood testing. But instead of using a solution to find and quantify the biomarker in blood, the microneedles directly capture it from the liquid that surrounds the cells in skin, which is called dermal interstitial fluid (ISF). Once the biomarkers have been captured, they are detected in the same way - using fluorescence to indicate their presence and quantity.
ISF is a rich source of biomolecules, densely packed with everything from neurotransmitters to cellular waste. However, to analyze biomarkers in ISF, conventional method generally requires extraction of ISF from skin. This method is difficult and usually the amount of ISF that can be obtained is not sufficient for analysis. That has been a major hurdle for developing microneedle-based biosensing technology. Another method involves direct capture of the biomarker in ISF without having to extract ISF. Like showing up to a packed concert and trying to make your way up front, the biomarker has to maneuver through a crowded, dynamic soup of ISF before reaching the microneedle in the skin tissue. Under such conditions, being able to capture enough of the biomarker to see using the traditional assay isn’t easy.
To address the issue, the team used “plasmonic-fluors,” an ultrabright fluorescence nanolabel. Compared with traditional fluorescent labels, when an assay was done on microneedle patch using plasmonic-fluor, the signal of target protein biomarkers shined about 1,400 times as bright and become detectable even when they are present at low concentrations. These patches have a host of qualities that can make a real impact on medicine, patient care and research. They would allow providers to monitor biomarkers over time, particularly important when it comes to understanding how immunity plays out in new diseases. For example, researchers working on COVID-19 vaccines who need to know if people are producing the right antibodies and for how long could use the patch to see whether a person has antibodies against COVID-19 and at what level. Also, EMTs could use a microneedle patch to test for troponin, the biomarker that indicates myocardial infarction, instead of having to get to the hospital and have blood drawn.
For people with chronic conditions that require regular monitoring, microneedle patches could eliminate unnecessary trips to the hospital, saving money, time and discomfort.
“Previously, concentrations of a biomarker had to be on the order of a few micrograms per milliliter of fluid,” Zheyu (Ryan) Wang, a graduate student in the Singamaneni lab and one of the lead authors of the paper, said. That’s far beyond the real-world physiological range. But using plasmonic-fluor, the research team was able to detect biomarkers on the order of picograms per milliliter. That’s orders of magnitude more sensitive.”
“We’ll have to determine clinical cutoffs,” that is, the range of biomarker in ISF that corresponds to a normal vs. abnormal level,” said Srikanth Singamaneni, the Lilyan & E. Lisle Hughes Professor in the Department of Mechanical Engineering & Materials Sciences. “We’ll have to determine what levels of biomarker are normal, what levels are pathological.” And his research group is working on delivery methods for long distances and harsh conditions, providing options for improving rural healthcare.
“But we don’t have to do all of this ourselves,” added Singamaneni. “Instead, the technology will be available to experts in different areas of medicine. We have created a platform technology that anyone can use,” he said. “And they can use it to find their own biomarker of interest.”
Related Links:
Washington University in St. Louis
Latest COVID-19 News
- New Immunosensor Paves Way to Rapid POC Testing for COVID-19 and Emerging Infectious Diseases
- Long COVID Etiologies Found in Acute Infection Blood Samples
- Novel Device Detects COVID-19 Antibodies in Five Minutes
- CRISPR-Powered COVID-19 Test Detects SARS-CoV-2 in 30 Minutes Using Gene Scissors
- Gut Microbiome Dysbiosis Linked to COVID-19
- Novel SARS CoV-2 Rapid Antigen Test Validated for Diagnostic Accuracy
- New COVID + Flu + R.S.V. Test to Help Prepare for `Tripledemic`
- AI Takes Guesswork Out Of Lateral Flow Testing
- Fastest Ever SARS-CoV-2 Antigen Test Designed for Non-Invasive COVID-19 Testing in Any Setting
- Rapid Antigen Tests Detect Omicron, Delta SARS-CoV-2 Variants
- Health Care Professionals Showed Increased Interest in POC Technologies During Pandemic, Finds Study
- Set Up Reserve Lab Capacity Now for Faster Response to Next Pandemic, Say Researchers
- Blood Test Performed During Initial Infection Predicts Long COVID Risk
- Low-Cost COVID-19 Testing Platform Combines Sensitivity of PCR and Speed of Antigen Tests
- Finger-Prick Blood Test Identifies Immunity to COVID-19
- Quick Test Kit Determines Immunity Against COVID-19 and Its Variants
Channels
Clinical Chemistry
view channel
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read more
AI-Powered Raman Spectroscopy Method Enables Rapid Drug Detection in Blood
Accurately monitoring drug levels in the blood is essential for effective treatment, particularly in the management of cardiovascular diseases. Traditional techniques for monitoring blood drug levels often... Read more
Novel LC-MS/MS Assay Detects Low Creatinine in Sweat and Saliva
Timely and accurate monitoring of renal function is essential for managing patients at risk of acute kidney injury (AKI), which affects about 12% of hospitalized patients and up to 57% of ICU patients.... Read more
Biosensing Technology Breakthrough Paves Way for New Methods of Early Disease Detection
Nanopores are tiny openings that can detect individual molecules as they pass through, making them ideal for analyzing biomolecules like DNA and proteins. However, detecting proteins at extremely low ... Read moreMolecular Diagnostics
view channel
Portable Blood-Based Device Detects Colon Cancer
Colon cancer is the second leading cause of cancer-related deaths in the U.S., yet it is highly treatable when detected at an early stage. Traditional colonoscopy screenings, although effective, are unpleasant,... Read more
New DNA Test Diagnoses Bacterial Infections Faster and More Accurately
Antimicrobial resistance has emerged as a significant global health threat, causing at least one million deaths annually since 1990. The Global Research on Antimicrobial Resistance (GRAM) Project warns... Read more
Innovative Bio-Detection Platform Improves Early Cancer Screening and Monitoring
Cancer remains one of the leading causes of death globally, underscoring the critical need for more advanced, efficient, and early detection methods. Circulating tumor cells (CTCs) are cells that have... Read more
Blood Test Could Help More Women Survive Aggressive Triple Negative Breast Cancer
Cancer research shows that over 90% of women diagnosed with breast cancer at its earliest stage survive for five years or more. However, this survival rate dramatically decreases to just 30% when the cancer... Read moreHematology
view channel
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read more
WBC Count Could Predict Severity of COVID-19 Symptoms
The global health crisis caused by the SARS-CoV-2 virus continues to impact millions of people worldwide, with many experiencing persistent symptoms months after the initial diagnosis. Cognitive impairment... Read more
New Platelet Counting Technology to Help Labs Prevent Diagnosis Errors
Accurate platelet count testing is a significant challenge for laboratories. Inaccurate results can lead to misdiagnosis, missed diagnoses, and delayed treatment for a variety of potentially fatal conditions,... Read more
Streamlined Approach to Testing for Heparin-Induced Thrombocytopenia Improves Diagnostic Accuracy
Heparin-induced thrombocytopenia (HIT), a serious side effect of the blood thinner heparin, is difficult to diagnose because thrombocytopenia, or low platelet count, can be caused by a variety of factors... Read moreImmunology
view channelCerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
In recent years, cancer immunotherapy has emerged as a promising approach where the patient's immune system is harnessed to fight cancer. One form of immunotherapy, called CAR-T-cell therapy, involves... Read more
New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
Preterm infants are particularly vulnerable due to their organs still undergoing development, which can lead to difficulties in breathing, eating, and regulating body temperature. This is especially true... Read more
Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read moreMicrobiology
view channel
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read more
Rapid PCR Testing in ICU Improves Antibiotic Stewardship
A collaborative study led by the University of Plymouth (Devon, UK) has shown that rapid polymerase chain reaction (PCR) testing in the intensive care unit (ICU) improved antibiotic stewardship compared... Read morePathology
view channel
New Test Diagnoses High-Risk Childhood Brain Tumors
Medulloblastoma, which originates in the cerebellum, the rear part of the brain, is the most prevalent malignant brain tumor in children and is notoriously difficult to diagnose. Currently, identifying... Read more
Informatics Solution Elevates Laboratory Efficiency and Patient Care
QuidelOrtho Corporation (San Diego, CA, USA) has introduced the QuidelOrtho Results Manager System, a cutting-edge informatics solution designed to meet the increasing demands of modern laboratories.... Read more
Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread
Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
New AI Tool Outperforms Previous Methods for Identifying Colorectal Cancer from Tissue Sample Analysis
Tissue analysis typically involves a pathologist reviewing scanned digital slides from a patient’s intestinal sample and marking specific areas, such as those where cancerous and related tissues are present.... Read moreTechnology
view channel
POC Paper-Based Sensor Platform to Transform Cardiac Diagnostics
Cardiovascular diseases continue to be the leading cause of death worldwide, accounting for over 19 million fatalities annually. Early detection of myocardial infarction (MI), commonly known as a heart... Read more
Study Explores Impact of POC Testing on Future of Diagnostics
In today’s rapidly changing world, having quick and accurate access to medical information is more crucial than ever. Point-of-Care Diagnostics (PoC-D) and Point-of-Care Testing (PoC-T) are making this... Read more
Low-Cost, Fast Response Sensor Enables Early and Accurate Detection of Lung Cancer
Cancer biomarkers are valuable tools for early diagnosis as their concentration in body fluids, such as serum, can be measured to detect the disease at an earlier stage. Additionally, serum levels of these... Read moreIndustry
view channel
CACLP 2025 Unites Global Innovators in IVD Industry
CACLP (Shanghai, China) will be holding the 22nd China International In Vitro Diagnostic Expo, the largest and most influential gathering of the IVD industry in China, 22-24 March 2025 at the Hangzhou... Read more
Bio-Rad to Acquire Digital PCR Developer Stilla Technologies
Bio-Rad Laboratories (Hercules, CA, USA) has entered into a binding offer to purchase all equity interests in Stilla Technologies (Villejuif, France). The acquisition remains subject to consultation with... Read more