We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Fast Antibacterial Susceptibility Testing by Measuring Electron Transfer Metabolism

By LabMedica International staff writers
Posted on 07 Dec 2020
Print article
Image: A recently developed device enables faster testing of antibiotic-resistant bacteria (Photo courtesy of Dr. Seokheun `Sean` Choi)
Image: A recently developed device enables faster testing of antibiotic-resistant bacteria (Photo courtesy of Dr. Seokheun `Sean` Choi)
A recently developed device facilitates bacterial antibiotics susceptibility testing by measuring the effect of these drugs on bacterial electron transfer metabolism.

Since some 2.8 million antibiotic-resistant infections occur annually in the United States with more than 35,000 fatalities, fast and simple antimicrobial susceptibility testing (AST) is urgently required to guide effective antibiotic usages and for monitoring of the antimicrobial resistance rate.

Towards this end, investigators at Binghamton University (NY, USA) established a rapid, quantitative, and high-throughput phenotypic AST by measuring electrons transferred from the interiors of microbial cells to external electrodes. Since the transferred electrons are based on microbial metabolic activities and are inversely proportional to the concentration of potential antibiotics, the changes in electrical outputs can be readily used as a signal to efficiently monitor bacterial growth and antibiotic susceptibility.

For this study, the investigators utilized the common Gram-negative pathogenic bacterium Pseudomonas aeruginosa together with the first-line antibiotic gentamicin. The novel detector had eight sensors printed on a paper surface. The minimum inhibitory concentration (MIC) values generated by the new technique were validated by the gold standard broth microdilution (BMD) method.

Results revealed that the new approach provided quantitative, actionable MIC results within just five hours, as it measured electricity produced by bacterial metabolism instead of the days needed for growth-observation methods.

"To effectively treat the infections, we need to select the right antibiotics with the exact dose for the appropriate duration," said senior author Dr. Seokheun Choi, associate professor of electrical and computer engineering at Binghamton University. "There is a need to develop an antibiotic-susceptibility testing method and offer effective guidelines to treat these infections."

"Although many bacteria are energy-producing, some pathogens do not perform extracellular electron transfer and may not be used directly in our platform. However, various chemical compounds can assist the electron transfer from non-electricity-producing bacteria," said Dr. Choi. "For instance, E. coli cannot transfer electrons from the inside of the cell to the outside, but with the addition of some chemical compounds, they can generate electricity. Now we are working on how to make this technique general to all bacteria cells. We leverage this biochemical event for a new technique to assess the antibiotic effectiveness against bacteria without monitoring the whole bacterial growth. As far as I know, we are the first to demonstrate this technique in a rapid and high-throughput manner by using paper as a substrate."

The new method for determining bacterial antibiotic resistance was published in the November 15, 2020 issue of the journal Biosensors and Bioelectronics.

Related Links:
Binghamton University

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Biological Indicator Vials
BI-O.K.
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.