Virus-Like Probes Could Help Make Rapid COVID-19 Testing More Accurate and Reliable
By LabMedica International staff writers Posted on 02 Dec 2020 |

Image: Illustration and TEM image of SARS-CoV-2 positive control made from plant virus-based nanoparticles (left) and bacteriophage nanoparticles (right) (Photo courtesy of Soo Khim Chan/ACS Nano)
A team of nanoengineers has developed new and improved probes, known as positive controls, that could make it easier to validate rapid, point-of-care diagnostic tests for COVID-19 across the globe.
The positive controls, made from virus-like particles by nanoengineers at the University of California San Diego (La Jolla, CA, USA), are stable and easy to manufacture. Researchers say the controls have the potential to improve the accuracy of new COVID-19 tests that are simpler, faster and cheaper, making it possible to expand testing outside the lab.
Positive controls are a staple in the lab - they are used to verify that a test or experiment indeed works. The positive controls that are primarily used to validate today’s COVID-19 tests are naked synthetic RNAs, plasmids or RNA samples from infected patients. But the issue is RNA and plasmids are not stable like viral particles. They can degrade easily and require refrigeration, making them inconvenient and costly to ship around the world or store for long periods of time.
By packaging segments of RNA from the SARS-CoV-2 virus into virus-like particles, the researchers have shown that they can create positive controls for COVID-19 tests that are stable - they can be stored for a week at temperatures up to 40 C (104 F), and retain 70% of their activity even after one month of storage - and can pass detection as the novel coronavirus without being infectious. The team developed two different controls: one made from plant virus nanoparticles, the other from bacteriophage nanoparticles. The controls are run and analyzed right alongside a patient sample, providing a reliable benchmark for what a positive test result should look like.
To make the plant virus-based controls, the researchers use the cowpea chlorotic mottle virus, which infects black-eyed pea plants. They essentially open the virus, remove its RNA contents, replace them with a synthesized RNA template containing specific sequences from the SARS-CoV-2 virus, then close everything back up. The process to make the bacteriophage-based controls starts with plasmids, which are rings of DNA. Inserted into these plasmids are the gene sequences of interest from the SARS-CoV-2 virus, as well as genes coding for surface proteins of the bacteriophage Qbeta. These plasmids are then taken up by bacteria. This process reprograms the bacteria to produce virus-like particles with SARS-CoV-2 RNA sequences on the inside and Qbeta bacteriophage proteins on the outside.
Both controls were validated with clinical samples. A big advantage, the researchers point out, is that unlike the positive controls used today, these can be used in all steps of a COVID-19 test. So far, the researchers have adapted their controls for use in the CDC-authorized RT-PCR test. While this is currently the gold standard for COVID-19 testing, it is expensive, complex, and can take days to return results due to the logistics of sending samples off to a lab with PCR capability. The researchers are now working on adapting the controls for use in less complex diagnostic tests like the RT-LAMP test that can be done on the spot, out of the lab and provide results right away.
“Our goal is to make an impact not necessarily in the hospital, where you have state-of-the-art facilities, but in low-resource, underserved areas that may not have the sophisticated infrastructure or trained personnel,” said Nicole Steinmetz, a professor of nanoengineering at the UC San Diego Jacobs School of Engineering. “It’s a relatively simple nanotechnology approach to make low-tech assays more accurate. This could help break down some of the barriers to mass testing of underserved populations in the U.S. and across the world.”
Related Links:
University of California San Diego
The positive controls, made from virus-like particles by nanoengineers at the University of California San Diego (La Jolla, CA, USA), are stable and easy to manufacture. Researchers say the controls have the potential to improve the accuracy of new COVID-19 tests that are simpler, faster and cheaper, making it possible to expand testing outside the lab.
Positive controls are a staple in the lab - they are used to verify that a test or experiment indeed works. The positive controls that are primarily used to validate today’s COVID-19 tests are naked synthetic RNAs, plasmids or RNA samples from infected patients. But the issue is RNA and plasmids are not stable like viral particles. They can degrade easily and require refrigeration, making them inconvenient and costly to ship around the world or store for long periods of time.
By packaging segments of RNA from the SARS-CoV-2 virus into virus-like particles, the researchers have shown that they can create positive controls for COVID-19 tests that are stable - they can be stored for a week at temperatures up to 40 C (104 F), and retain 70% of their activity even after one month of storage - and can pass detection as the novel coronavirus without being infectious. The team developed two different controls: one made from plant virus nanoparticles, the other from bacteriophage nanoparticles. The controls are run and analyzed right alongside a patient sample, providing a reliable benchmark for what a positive test result should look like.
To make the plant virus-based controls, the researchers use the cowpea chlorotic mottle virus, which infects black-eyed pea plants. They essentially open the virus, remove its RNA contents, replace them with a synthesized RNA template containing specific sequences from the SARS-CoV-2 virus, then close everything back up. The process to make the bacteriophage-based controls starts with plasmids, which are rings of DNA. Inserted into these plasmids are the gene sequences of interest from the SARS-CoV-2 virus, as well as genes coding for surface proteins of the bacteriophage Qbeta. These plasmids are then taken up by bacteria. This process reprograms the bacteria to produce virus-like particles with SARS-CoV-2 RNA sequences on the inside and Qbeta bacteriophage proteins on the outside.
Both controls were validated with clinical samples. A big advantage, the researchers point out, is that unlike the positive controls used today, these can be used in all steps of a COVID-19 test. So far, the researchers have adapted their controls for use in the CDC-authorized RT-PCR test. While this is currently the gold standard for COVID-19 testing, it is expensive, complex, and can take days to return results due to the logistics of sending samples off to a lab with PCR capability. The researchers are now working on adapting the controls for use in less complex diagnostic tests like the RT-LAMP test that can be done on the spot, out of the lab and provide results right away.
“Our goal is to make an impact not necessarily in the hospital, where you have state-of-the-art facilities, but in low-resource, underserved areas that may not have the sophisticated infrastructure or trained personnel,” said Nicole Steinmetz, a professor of nanoengineering at the UC San Diego Jacobs School of Engineering. “It’s a relatively simple nanotechnology approach to make low-tech assays more accurate. This could help break down some of the barriers to mass testing of underserved populations in the U.S. and across the world.”
Related Links:
University of California San Diego
Latest COVID-19 News
- New Immunosensor Paves Way to Rapid POC Testing for COVID-19 and Emerging Infectious Diseases
- Long COVID Etiologies Found in Acute Infection Blood Samples
- Novel Device Detects COVID-19 Antibodies in Five Minutes
- CRISPR-Powered COVID-19 Test Detects SARS-CoV-2 in 30 Minutes Using Gene Scissors
- Gut Microbiome Dysbiosis Linked to COVID-19
- Novel SARS CoV-2 Rapid Antigen Test Validated for Diagnostic Accuracy
- New COVID + Flu + R.S.V. Test to Help Prepare for `Tripledemic`
- AI Takes Guesswork Out Of Lateral Flow Testing
- Fastest Ever SARS-CoV-2 Antigen Test Designed for Non-Invasive COVID-19 Testing in Any Setting
- Rapid Antigen Tests Detect Omicron, Delta SARS-CoV-2 Variants
- Health Care Professionals Showed Increased Interest in POC Technologies During Pandemic, Finds Study
- Set Up Reserve Lab Capacity Now for Faster Response to Next Pandemic, Say Researchers
- Blood Test Performed During Initial Infection Predicts Long COVID Risk
- Low-Cost COVID-19 Testing Platform Combines Sensitivity of PCR and Speed of Antigen Tests
- Finger-Prick Blood Test Identifies Immunity to COVID-19
- Quick Test Kit Determines Immunity Against COVID-19 and Its Variants
Channels
Clinical Chemistry
view channel
Gold Nanoparticles to Improve Accuracy of Ovarian Cancer Diagnosis
Ovarian cancer is considered one of the deadliest cancers, in part because it rarely shows clear symptoms in its early stages, and diagnosis is often complex. Current approaches make it difficult to accurately... Read more
Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy
Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read moreMolecular Diagnostics
view channel
Brain Inflammation Biomarker Detects Alzheimer’s Years Before Symptoms Appear
Alzheimer’s disease affects millions globally, but patients are often diagnosed only after memory loss and other symptoms appear, when brain damage is already extensive. Detecting the disease much earlier... Read more
First-of-Its-Kind Blood Test Detects Over 50 Cancer Types
Many cancers lack routine screening, so patients are often diagnosed only after tumors grow and spread, when options are limited. A faster, less invasive approach that broadens early detection could shift... Read more
Routine Blood Draws Could Detect Epigenetic Biomarkers for Predicting Cardiovascular Disease Risk
Cardiovascular disease is a leading cause of death worldwide, yet predicting individual risk remains a persistent challenge. Traditional risk factors, while useful, do not fully capture biological changes... Read moreHematology
view channel
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients
Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more
Novel Multiplex Assay Supports Diagnosis of Autoimmune Vasculitis
Autoimmune vasculitis and related conditions are difficult to diagnose quickly and accurately, often requiring multiple tests to confirm the presence of specific autoantibodies. Traditional methods can... Read more
Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more
Simple Genetic Testing Could Predict Treatment Success in Multiple Sclerosis Patients
Multiple sclerosis (MS) patients starting therapy often face a choice between interferon beta and glatiramer acetate, two equally established and well-tolerated first-line treatments. Until now, the decision... Read moreMicrobiology
view channel
Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
Sepsis arises from infection and immune dysregulation, with neutrophils playing a central role in its progression. However, current clinical tools are unable to both isolate these cells and assess their... Read more
New Diagnostic Method Confirms Sepsis Infections Earlier
Sepsis remains one of the most dangerous medical emergencies, often progressing rapidly and becoming fatal without timely intervention. Each hour of delayed treatment in septic shock reduces patient survival... Read more
New Markers Could Predict Risk of Severe Chlamydia Infection
Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more
Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
Vaginal health depends on maintaining a balanced microbiome, particularly certain Lactobacillus species. Disruption of this balance, known as dysbiosis, can increase risks of infection, pregnancy complications,... Read morePathology
view channel
Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma
Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more
Clinicopathologic Study Supports Exclusion of Cervical Serous Carcinoma from WHO Classification
High-grade serous carcinoma is a rare diagnosis in cervical biopsies and can be difficult to distinguish from other tumor types. Cervical serous carcinoma is no longer recognized as a primary cervical... Read moreTechnology
view channel
Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine
The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Rapid Diagnostic Technology Utilizes Breath Samples to Detect Lower Respiratory Tract Infections
Respiratory tract infections (LRTIs) are leading causes of illness and death worldwide, particularly among vulnerable populations such as the elderly, young children, and those with compromised immune systems.... Read moreIndustry
view channel
Werfen and VolitionRx Partner to Advance Diagnostic Testing for Antiphospholipid Syndrome
Antiphospholipid syndrome (APS) is a rare autoimmune disorder that causes the immune system to produce abnormal antibodies, making the blood “stickier” than normal. This condition increases the risk of... Read more