Metagenomic Sequencing Quickly Identifies Pathogens in Body Fluids
|
By LabMedica International staff writers Posted on 23 Nov 2020 |

Image: The portable MinION sequencing platform runs one flow cell and desktop GridION can run up to five flow cells at any time (Photo courtesy of Oxford Nanopore).
Metagenomic next-generation sequencing (mNGS) is a shotgun sequencing approach in which all of the nucleic acid (DNA and RNA) in a clinical sample is sequenced at a very high depth, 10-20 million sequences per sample.
Being able to rapidly determine the cause of patients' infections can inform clinicians' treatment approaches and guide the selection of antibiotics. Fast and accurate pathogen identification is not always possible in the clinic, as cultures take time to grow and as polymerase chain reaction (PCR) testing requires an idea of what microbe might be the source of the infection.
A team of Laboratory Medical Scientists at University of California, San Francisco (San Francisco, CA, USA) collected a range of body fluid samples, such as abscess, pleural, and cerebrospinal fluids, from 158 patients, most of whom were hospitalized. Of these, 127 samples were positive for a pathogen by culture, nine were culture negative, but PCR positive and 34 were negative controls. The investigators then applied the mNGS testing protocol they developed to those samples. This protocol, they noted, is cross-compatible with both Oxford Nanopore (Oxford, UK) and Illumina (San Diego, CA, USA) sequencing platforms, can analyze all body fluid types, and can be automated in clinical microbiology laboratories. The reads generated are analyzed via the sequence-based ultra-rapid pathogen identification (SURPI) software to determine which, if any, pathogen is present.
The team evaluated the two sequencing platforms in comparison to microbiological testing using culture, 16S bacterial PCR and/or 28S–internal transcribed ribosomal gene spacer (28S–ITS) fungal PCR. They determined that their approach could detect bacteria with 79.2% and 90.6% specificity using Illumina sequencing, and with 75% sensitivity and 81.4% percent specificity using a nanopore sequencing approach. The performance of the test varied slightly by sample type, with the highest accuracy stemming from CSF samples. Further, the team noted that nanopore sequencing began to return results in as little as 50 minutes and had an average sample-to-answer turnaround time of about six hours. Illumina sequencing, meanwhile, had an average turnaround time of about 24 hours.
The approach could also detect fungal pathogens, with 91% sensitivity and 89% specificity using Illumina sequencing and with 91% sensitivity and 100% using nanopore sequencing. Further, in a case series of a dozen patients whose samples were culture- and PCR-negative, but ultimately determined to have an infection, the scientists found that seven tested positive by mNGS. Only one of the negative controls was a false positive for a bacterial pathogen by mNGS, and of the false-negative cases, Staphylococcus aureus was the most commonly missed bacterium. The team suggested the lower sensitivity in detecting S. aureus, especially by nanopore sequencing, could be due to higher levels of background human host DNA.
The authors concluded that they had demonstrated the utility of mNGS in expanding the scope of conventional diagnostic testing to multiple body fluid types. The achievable less than six hours turnaround time using nanopore sequencing may also be essential for infections such as sepsis and pneumonia that demand a rapid response and timely diagnosis. The study was published on November 9, 2020 in the journal Nature Medicine.
Related Links:
University of California, San Francisco
Oxford Nanopore
Illumina
Being able to rapidly determine the cause of patients' infections can inform clinicians' treatment approaches and guide the selection of antibiotics. Fast and accurate pathogen identification is not always possible in the clinic, as cultures take time to grow and as polymerase chain reaction (PCR) testing requires an idea of what microbe might be the source of the infection.
A team of Laboratory Medical Scientists at University of California, San Francisco (San Francisco, CA, USA) collected a range of body fluid samples, such as abscess, pleural, and cerebrospinal fluids, from 158 patients, most of whom were hospitalized. Of these, 127 samples were positive for a pathogen by culture, nine were culture negative, but PCR positive and 34 were negative controls. The investigators then applied the mNGS testing protocol they developed to those samples. This protocol, they noted, is cross-compatible with both Oxford Nanopore (Oxford, UK) and Illumina (San Diego, CA, USA) sequencing platforms, can analyze all body fluid types, and can be automated in clinical microbiology laboratories. The reads generated are analyzed via the sequence-based ultra-rapid pathogen identification (SURPI) software to determine which, if any, pathogen is present.
The team evaluated the two sequencing platforms in comparison to microbiological testing using culture, 16S bacterial PCR and/or 28S–internal transcribed ribosomal gene spacer (28S–ITS) fungal PCR. They determined that their approach could detect bacteria with 79.2% and 90.6% specificity using Illumina sequencing, and with 75% sensitivity and 81.4% percent specificity using a nanopore sequencing approach. The performance of the test varied slightly by sample type, with the highest accuracy stemming from CSF samples. Further, the team noted that nanopore sequencing began to return results in as little as 50 minutes and had an average sample-to-answer turnaround time of about six hours. Illumina sequencing, meanwhile, had an average turnaround time of about 24 hours.
The approach could also detect fungal pathogens, with 91% sensitivity and 89% specificity using Illumina sequencing and with 91% sensitivity and 100% using nanopore sequencing. Further, in a case series of a dozen patients whose samples were culture- and PCR-negative, but ultimately determined to have an infection, the scientists found that seven tested positive by mNGS. Only one of the negative controls was a false positive for a bacterial pathogen by mNGS, and of the false-negative cases, Staphylococcus aureus was the most commonly missed bacterium. The team suggested the lower sensitivity in detecting S. aureus, especially by nanopore sequencing, could be due to higher levels of background human host DNA.
The authors concluded that they had demonstrated the utility of mNGS in expanding the scope of conventional diagnostic testing to multiple body fluid types. The achievable less than six hours turnaround time using nanopore sequencing may also be essential for infections such as sepsis and pneumonia that demand a rapid response and timely diagnosis. The study was published on November 9, 2020 in the journal Nature Medicine.
Related Links:
University of California, San Francisco
Oxford Nanopore
Illumina
Latest Molecular Diagnostics News
- Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
- Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
- Two-in-One DNA Analysis Improves Diagnostic Accuracy While Saving Time and Costs
- “Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
- New Tool Maps Chromosome Shifts in Cancer Cells to Predict Tumor Evolution
- Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
- Newly-Identified Parkinson’s Biomarkers to Enable Early Diagnosis Via Blood Tests
- New Blood Test Could Detect Pancreatic Cancer at More Treatable Stage
- Liquid Biopsy Could Replace Surgical Biopsy for Diagnosing Primary Central Nervous Lymphoma
- New Tool Reveals Hidden Metabolic Weakness in Blood Cancers
- World's First Blood Test Distinguishes Between Benign and Cancerous Lung Nodules
- Rapid Test Uses Mobile Phone to Identify Severe Imported Malaria Within Minutes
- Gut Microbiome Signatures Predict Long-Term Outcomes in Acute Pancreatitis
- Blood Test Promises Faster Answers for Deadly Fungal Infections
- Blood Test Could Detect Infection Exposure History
- Urine-Based MRD Test Tracks Response to Bladder Cancer Surgery
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







