Metabolomics Profiles Associated with Diabetic Retinopathy
|
By LabMedica International staff writers Posted on 16 Nov 2020 |

Image: The AbsoluteIDQ p180 kit provides scientists with highly reproducible metabolomics data to confidently obtain detailed knowledge about the metabolic phenotypes in their studies (Photo courtesy of BIOCRATES Life Sciences).
Diabetic retinopathy (DR), like diabetic neuropathy and nephropathy, is a common complication of diabetes. It is the leading cause of loss of vision in diabetic patients. Long-standing disease, along with hyperglycemia, hyperlipidemia, hypertension, and genetic factors, is a major risk factor of diabetes retinopathy.
Metabolomics profiling is a rapidly evolving method used to identify the metabolites in biological fluids and investigate disease progression. Quantitative analyses of small-molecule metabolites in biological specimens such as blood and urine can be performed due to the rapid advances in metabolomics.
Medical Scientists at the Chungbuk National University College of Medicine (Cheongju, Republic of Korea) included in a study 317 type 2 diabetes (T2D) patients of which 143 non-DR (NDR) patients, 123 non- proliferative DR (NPDR) patients, and 51 proliferative-DR (PDR) patients. Gender, age, height, weight, body mass index (BMI), and HbA1c, glucose, and creatinine levels of all patients were recorded.
The serum samples of the T2D patients were analyzed using a targeted metabolomics approach. To quantify the metabolites, liquid chromatography (LC) and flow-injection analysis (FIA)–mass spectrometry (MS) were performed using the AbsoluteIDQ p180 Kit (BIOCRATES Life Sciences AG, Innsbruck, Austria). The serum samples were analyzed using the API 4000 QTRAP LC/MS/MS system (Applied Biosystems, Foster City, CA, USA) and the Agilent 1200 HPLC system (Agilent Technologies, Santa Clara, CA, USA).
The investigators reported that the concentrations of 62 metabolites of the NDR versus DR group, 53 metabolites of the NDR versus NPDR group, and 30 metabolites of the NDR versus PDR group were found to be significantly different. Sixteen metabolites were selected as specific metabolites common to NPDR and PDR. Among them, three metabolites including total dimethylarginine, tryptophan, and kynurenine were potential makers of DR progression in T2D patients. Additionally, several metabolites such as carnitines, several amino acids, and phosphatidylcholines also showed a biomarker potential.
The authors concluded that they had revealed via comprehensive metabolomics profiling using a high-throughput platform, several metabolites associated with DR. These new DR-related metabolites should be considered in the study of the mechanism behind the initiation and progression of DR in T2D patients. The study was published on October 29, 2020 in the journal PLOS ONE.
Related Links:
Chungbuk National University College of Medicine
BIOCRATES Life Sciences
Applied Biosystems
Agilent Technologies
Metabolomics profiling is a rapidly evolving method used to identify the metabolites in biological fluids and investigate disease progression. Quantitative analyses of small-molecule metabolites in biological specimens such as blood and urine can be performed due to the rapid advances in metabolomics.
Medical Scientists at the Chungbuk National University College of Medicine (Cheongju, Republic of Korea) included in a study 317 type 2 diabetes (T2D) patients of which 143 non-DR (NDR) patients, 123 non- proliferative DR (NPDR) patients, and 51 proliferative-DR (PDR) patients. Gender, age, height, weight, body mass index (BMI), and HbA1c, glucose, and creatinine levels of all patients were recorded.
The serum samples of the T2D patients were analyzed using a targeted metabolomics approach. To quantify the metabolites, liquid chromatography (LC) and flow-injection analysis (FIA)–mass spectrometry (MS) were performed using the AbsoluteIDQ p180 Kit (BIOCRATES Life Sciences AG, Innsbruck, Austria). The serum samples were analyzed using the API 4000 QTRAP LC/MS/MS system (Applied Biosystems, Foster City, CA, USA) and the Agilent 1200 HPLC system (Agilent Technologies, Santa Clara, CA, USA).
The investigators reported that the concentrations of 62 metabolites of the NDR versus DR group, 53 metabolites of the NDR versus NPDR group, and 30 metabolites of the NDR versus PDR group were found to be significantly different. Sixteen metabolites were selected as specific metabolites common to NPDR and PDR. Among them, three metabolites including total dimethylarginine, tryptophan, and kynurenine were potential makers of DR progression in T2D patients. Additionally, several metabolites such as carnitines, several amino acids, and phosphatidylcholines also showed a biomarker potential.
The authors concluded that they had revealed via comprehensive metabolomics profiling using a high-throughput platform, several metabolites associated with DR. These new DR-related metabolites should be considered in the study of the mechanism behind the initiation and progression of DR in T2D patients. The study was published on October 29, 2020 in the journal PLOS ONE.
Related Links:
Chungbuk National University College of Medicine
BIOCRATES Life Sciences
Applied Biosystems
Agilent Technologies
Latest Pathology News
- Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
- First-Of-Its-Kind Test Identifies Autism Risk at Birth
- AI Algorithms Improve Genetic Mutation Detection in Cancer Diagnostics
- Skin Biopsy Offers New Diagnostic Method for Neurodegenerative Diseases
- Fast Label-Free Method Identifies Aggressive Cancer Cells
- New X-Ray Method Promises Advances in Histology
- Single-Cell Profiling Technique Could Guide Early Cancer Detection
- Intraoperative Tumor Histology to Improve Cancer Surgeries
- Rapid Stool Test Could Help Pinpoint IBD Diagnosis
- AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery
- Deep Learning–Based Method Improves Cancer Diagnosis
- ADLM Updates Expert Guidance on Urine Drug Testing for Patients in Emergency Departments
- New Age-Based Blood Test Thresholds to Catch Ovarian Cancer Earlier
- Genetics and AI Improve Diagnosis of Aortic Stenosis
- AI Tool Simultaneously Identifies Genetic Mutations and Disease Type
- Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
Channels
Molecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







