Single-Molecule Tethering Detects Nucleic Acids and Microorganisms
|
By LabMedica International staff writers Posted on 29 Oct 2020 |

Image: The signal of SMOLT is generated by the displacement of micron-size beads tethered by DNA long-probes that are between 1 and 7 microns long. The molecular extension of thousands of DNA probes is determined with sub-micron precision using a robust, rapid and low-cost optical approach (Photo courtesy of Scanogen).
Detection of microbial nucleic acids in body fluids has become the preferred method for rapid diagnosis of many infectious diseases. However, culture-based diagnostics that are time-consuming remain the gold standard approach in certain cases, such as sepsis.
The polymerase chain reaction (PCR) has enabled a revolution in in vitro diagnostics due to its sensitivity and specificity. However, polymerase-based methodologies require complex sample preparation steps to remove polymerase inhibitors in certain specimen types, and relatively expensive reagents and instrumentation.
A team of scientists at the biotechnology company Scanogen (Windsor Mill, MD, USA) collected data from 200 tests run on normal samples spiked with known concentrations of pathogen. The team used a technology called single-molecule tethering (SMOLT) that generates a signal when micron-sized beads tethered by double-stranded DNA probes inside a capillary are displaced in the presence of a target pathogen.
Beads tethered by a probe can be differentiated from beads that are not specific to the target of interest because the long-probe tethered beads are displaced by a greater distance. The displacement is determined by processing images obtained with a low-magnification lens and a low-cost digital camera.
The team reported that SMOLT technology can detect RNA molecules in whole blood, urine, and sputum. The technology also detected Candida species and two bacterial species, Staphylococcus aureus and Pseudomonas aeruginosa, in whole blood. The limits of detection was between 1 and 3 colony forming unit per milliliter (CFU/mL), comparable to current PCR tests on the market. The technology also readily lends itself to multiplexing that would enable identification of up to 20 targets per test run.
The team showed that SMOLT detection of microbial ribosomal ribonucleic acid (rRNA) enables high sensitivity with a turnaround time from sample to results of 1.5 hours. They designed species-specific probes that targeted the rRNA of the two most prevalent sepsis-causing fungi, Candida albicans and Candida glabrata, as well as pan-fungal probes that targeted highly conserved regions in fungal rRNA using a local database of microbial and human rRNA sequences.
For clinical testing in a laboratory, the company envisions that its future customers will be able to stack testing modules on top of each other. An eight-module stack, with each module running tests for up to 20 pathogens, will cost about USD 50,000, Celedon said, adding that the price is significantly lower than the instruments with which it intends to complete.
Alfredo Celedon, the founder of Scanogen and CEO, said “The firm anticipates offering pricing to laboratories at between USD 20 and USD 50 per test, while competing multiplexed tests are priced at USD 200 or more per test. For clinical testing in a laboratory, the company envisions that its future customers will be able to stack testing modules on top of each other. The study was published on September 22, 2020 in the journal Nature Communications.
Related Links:
Scanogen
The polymerase chain reaction (PCR) has enabled a revolution in in vitro diagnostics due to its sensitivity and specificity. However, polymerase-based methodologies require complex sample preparation steps to remove polymerase inhibitors in certain specimen types, and relatively expensive reagents and instrumentation.
A team of scientists at the biotechnology company Scanogen (Windsor Mill, MD, USA) collected data from 200 tests run on normal samples spiked with known concentrations of pathogen. The team used a technology called single-molecule tethering (SMOLT) that generates a signal when micron-sized beads tethered by double-stranded DNA probes inside a capillary are displaced in the presence of a target pathogen.
Beads tethered by a probe can be differentiated from beads that are not specific to the target of interest because the long-probe tethered beads are displaced by a greater distance. The displacement is determined by processing images obtained with a low-magnification lens and a low-cost digital camera.
The team reported that SMOLT technology can detect RNA molecules in whole blood, urine, and sputum. The technology also detected Candida species and two bacterial species, Staphylococcus aureus and Pseudomonas aeruginosa, in whole blood. The limits of detection was between 1 and 3 colony forming unit per milliliter (CFU/mL), comparable to current PCR tests on the market. The technology also readily lends itself to multiplexing that would enable identification of up to 20 targets per test run.
The team showed that SMOLT detection of microbial ribosomal ribonucleic acid (rRNA) enables high sensitivity with a turnaround time from sample to results of 1.5 hours. They designed species-specific probes that targeted the rRNA of the two most prevalent sepsis-causing fungi, Candida albicans and Candida glabrata, as well as pan-fungal probes that targeted highly conserved regions in fungal rRNA using a local database of microbial and human rRNA sequences.
For clinical testing in a laboratory, the company envisions that its future customers will be able to stack testing modules on top of each other. An eight-module stack, with each module running tests for up to 20 pathogens, will cost about USD 50,000, Celedon said, adding that the price is significantly lower than the instruments with which it intends to complete.
Alfredo Celedon, the founder of Scanogen and CEO, said “The firm anticipates offering pricing to laboratories at between USD 20 and USD 50 per test, while competing multiplexed tests are priced at USD 200 or more per test. For clinical testing in a laboratory, the company envisions that its future customers will be able to stack testing modules on top of each other. The study was published on September 22, 2020 in the journal Nature Communications.
Related Links:
Scanogen
Latest Molecular Diagnostics News
- Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
- Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
- Two-in-One DNA Analysis Improves Diagnostic Accuracy While Saving Time and Costs
- “Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
- New Tool Maps Chromosome Shifts in Cancer Cells to Predict Tumor Evolution
- Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
- Newly-Identified Parkinson’s Biomarkers to Enable Early Diagnosis Via Blood Tests
- New Blood Test Could Detect Pancreatic Cancer at More Treatable Stage
- Liquid Biopsy Could Replace Surgical Biopsy for Diagnosing Primary Central Nervous Lymphoma
- New Tool Reveals Hidden Metabolic Weakness in Blood Cancers
- World's First Blood Test Distinguishes Between Benign and Cancerous Lung Nodules
- Rapid Test Uses Mobile Phone to Identify Severe Imported Malaria Within Minutes
- Gut Microbiome Signatures Predict Long-Term Outcomes in Acute Pancreatitis
- Blood Test Promises Faster Answers for Deadly Fungal Infections
- Blood Test Could Detect Infection Exposure History
- Urine-Based MRD Test Tracks Response to Bladder Cancer Surgery
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







