Exome Sequencing Identifies Genetic Loci Linked to the Fetal Syndrome Nonimmune Hydrops Fetalis
By LabMedica International staff writers Posted on 19 Oct 2020 |

Image: Ultrasound scan of fetus showing hydrops fetalis (Photo courtesy of Wikimedia Commons)
An exome sequencing technique was used to identify genetic loci linked to development of about 30% of cases of nonimmune hydrops fetalis (NIHF).
Hydrops fetalis is a condition in the fetus characterized by an accumulation of fluid, or edema, in at least two fetal compartments. Locations can include the subcutaneous tissue on the scalp, the pleura (pleural effusion), the pericardium (pericardial effusion), and the abdomen (ascites). NHIF is actually a prenatal form of heart failure, in which the heart is unable to satisfy demand (in most cases abnormally high) for blood flow. This occurs when the fetal heart needs to pump a much greater volume of blood to deliver the same amount of oxygen. The increased demand for cardiac output leads to heart failure, and corresponding edema. NHIF has numerous genetic causes; the extent to which exome sequencing can aid in its diagnosis is unclear.
To determine the efficacy of exome sequencing for diagnosing NHIF, investigators at the University of California, San Francisco (USA) used the procedure to evaluate a series of 127 consecutive unexplained cases of NIHF that were defined by the presence of fetal ascites, pleural or pericardial effusions, skin edema, cystic hygroma, increased nuchal translucency, or a combination of these conditions.
Results identified diagnostic genetic variants in 37 of the 127 cases (29%). These included those for disorders affecting the RAS–MAPK cell-signaling pathway (known as RASopathies) (30% of the genetic diagnoses); inborn errors of metabolism and musculoskeletal disorders (11% each); lymphatic, neurodevelopmental, cardiovascular, and hematologic disorders (8% each); and others. Prognoses ranged from a relatively mild outcome to death during the perinatal period. Overall, 68% of the cases (25 of 37) with diagnostic variants were autosomal dominant (of which 12% were inherited and 88% were de novo), 27% (10 of 37) were autosomal recessive (of which 95% were inherited and 5% were de novo), one was inherited X-linked recessive, and one was of uncertain inheritance.
First author Dr. Teresa Sparks, assistant professor of obstetrics, gynecology, and reproductive sciences at the University of California, San Francisco, said, "The cause of most cases of NIHF is not identified with standard testing, but when we apply exome sequencing, we find a genetic diagnosis in nearly 30% of cases of previously unknown cause. There is a very wide range in genetic diagnoses underlying NIHF, and identifying the diagnosis is essential for families and healthcare providers. With advanced genetic testing, there is much more we can discover for families to help them understand the situation, for obstetricians and neonatologists to better take care of the pregnancy and anticipate the needs of the newborn, and ultimately to guide the development of novel prenatal management strategies such as in-utero therapies to improve health outcomes over the long term."
The NHIF exome sequencing study was published in the October 7, 2020, online edition of The New England Journal of Medicine.
Related Links:
University of California, San Francisco
Hydrops fetalis is a condition in the fetus characterized by an accumulation of fluid, or edema, in at least two fetal compartments. Locations can include the subcutaneous tissue on the scalp, the pleura (pleural effusion), the pericardium (pericardial effusion), and the abdomen (ascites). NHIF is actually a prenatal form of heart failure, in which the heart is unable to satisfy demand (in most cases abnormally high) for blood flow. This occurs when the fetal heart needs to pump a much greater volume of blood to deliver the same amount of oxygen. The increased demand for cardiac output leads to heart failure, and corresponding edema. NHIF has numerous genetic causes; the extent to which exome sequencing can aid in its diagnosis is unclear.
To determine the efficacy of exome sequencing for diagnosing NHIF, investigators at the University of California, San Francisco (USA) used the procedure to evaluate a series of 127 consecutive unexplained cases of NIHF that were defined by the presence of fetal ascites, pleural or pericardial effusions, skin edema, cystic hygroma, increased nuchal translucency, or a combination of these conditions.
Results identified diagnostic genetic variants in 37 of the 127 cases (29%). These included those for disorders affecting the RAS–MAPK cell-signaling pathway (known as RASopathies) (30% of the genetic diagnoses); inborn errors of metabolism and musculoskeletal disorders (11% each); lymphatic, neurodevelopmental, cardiovascular, and hematologic disorders (8% each); and others. Prognoses ranged from a relatively mild outcome to death during the perinatal period. Overall, 68% of the cases (25 of 37) with diagnostic variants were autosomal dominant (of which 12% were inherited and 88% were de novo), 27% (10 of 37) were autosomal recessive (of which 95% were inherited and 5% were de novo), one was inherited X-linked recessive, and one was of uncertain inheritance.
First author Dr. Teresa Sparks, assistant professor of obstetrics, gynecology, and reproductive sciences at the University of California, San Francisco, said, "The cause of most cases of NIHF is not identified with standard testing, but when we apply exome sequencing, we find a genetic diagnosis in nearly 30% of cases of previously unknown cause. There is a very wide range in genetic diagnoses underlying NIHF, and identifying the diagnosis is essential for families and healthcare providers. With advanced genetic testing, there is much more we can discover for families to help them understand the situation, for obstetricians and neonatologists to better take care of the pregnancy and anticipate the needs of the newborn, and ultimately to guide the development of novel prenatal management strategies such as in-utero therapies to improve health outcomes over the long term."
The NHIF exome sequencing study was published in the October 7, 2020, online edition of The New England Journal of Medicine.
Related Links:
University of California, San Francisco
Latest Molecular Diagnostics News
- RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms
- First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
- Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
- Novel Point-of-Care Technology Delivers Accurate HIV Results in Minutes
- Blood Test Rules Out Future Dementia Risk
- D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
- New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
- Chemiluminescence Immunoassays Support Diagnosis of Alzheimer’s Disease
- Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury
- Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression
- Simple DNA PCR-Based Lab Test to Enable Personalized Treatment of Bacterial Vaginosis
- Rapid Diagnostic Test to Halt Mother-To-Child Hepatitis B Transmission
- Simple Urine Test Could Help Patients Avoid Invasive Scans for Kidney Cancer
- New Bowel Cancer Blood Test to Improve Early Detection
- Refined Test Improves Parkinson’s Disease Diagnosis
- New Method Rapidly Diagnoses CVD Risk Via Molecular Blood Screening
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Deliver Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
Myasthenia gravis, an autoimmune disease, leads to muscle weakness that can affect a range of muscles, including those needed for basic actions like blinking, smiling, or moving. Researchers have long... Read more
AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
Lung adenocarcinoma, the most common form of non-small cell lung cancer (NSCLC), typically adopts one of six distinct growth patterns, often combining multiple patterns within a single tumor.... Read moreTechnology
view channel
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more