A Paper-Based Nucleic Acid Testing Device for Rapid Diagnosis of Mosquito-Borne Viral Diseases
By LabMedica International staff writers Posted on 22 Sep 2020 |

Image: The Aedes aegypti mosquito can spread various tropical diseases including dengue, zika, and chikungunya, which have similar symptoms (Photo courtesy of Gwangju Institute of Science and Technology)
An all-in-one nucleic acid testing device loaded into a paper chip forms the basis for a simple, rapid diagnostic test for a range of mosquito-borne viral diseases.
COVID-19 is not the only disease out there. Several tropical fever viruses transmitted by mosquitoes including zika, dengue, and chikungunya, are becoming a serious problem in global public health. The three diseases have similar symptoms, making early diagnosis particularly difficult without complex molecular diagnostic equipment. Thus, simple diagnostic tools are strongly required to monitor and prevent these diseases.
In this regard, investigators at the Gwangju Institute of Science and Technology (South Korea) developed LAMDA (lab-on-paper for all-in-one molecular diagnostics), which is a mini laboratory on a paper strip. LAMDA comprises a complete LAMP system in a paper strip. LAMP (Loop-mediated isothermal amplification) is a single-tube technique for the isothermal amplification of DNA and is a low-cost alternative to detect certain diseases. In contrast to the polymerase chain reaction (PCR) technique, in which the reaction is carried out with a series of alternating temperature steps or cycles, isothermal amplification is carried out at a constant temperature, and does not require a thermal cycler. Reverse Transcription Loop-mediated Isothermal Amplification (RT-LAMP) combines LAMP with a reverse transcription step to allow the detection of RNA.
The novel LAMDA platform concentrates the entire process of nucleic acid testing including sampling, extraction, amplification, and detection into a single paper chip. To use the LAMDA test, a drop of blood serum and some drops of distilled water are applied to two pads. The liquids flow through the paper strip horizontally and reach the base of a small vertical stack of layers that extracts all the RNA from the sample and multiplies any viral RNA of the three diseases that might be present. The top layer of the vertical stack comprises individual "reaction" patches, each designed to detect one of the three diseases. After the RNA is extracted, it flows up to the top layer, where LAMP reactions cause the fluorescent indicators on a patch to become dim if its target viral RNA is present in the sample.
Results obtained with the LAMDA platform revealed that three targets, zika virus, dengue virus, and chikungunya virus, in human serum could be detected simultaneously on the all-in-one paper chip within 60 minutes at 65 degrees Celsius. The all-in-one paper chip could be used as a real-time quantitative assay for five to 5000 copies of zika virus RNA, and LAMDA performance was demonstrated with five clinical specimens of zika and dengue virus.
Senior author Dr. Min-Gon Kim, professor of chemistry at the Gwangju Institute of Science and Technology, said "We believe that with minor modifications, such as a portable system to maintain reaction temperature at 65 degrees Celsius and a means to detect the fluorescence change with a smartphone, the proposed all-in-one paper chip can become a portable, low-cost, user-friendly, sensitive, and specific nucleic acid test platform with great potential in point-of-care diagnostics. We certainly hope that our approach and achievements with LAMDA will be helpful to advance research and development of on-site medical diagnostic tools,"
The LAMDA diagnostic platform was described in the October 1, 2020, online edition of the journal Biosensors and Bioelectronics.
Related Links:
Gwangju Institute of Science and Technology
COVID-19 is not the only disease out there. Several tropical fever viruses transmitted by mosquitoes including zika, dengue, and chikungunya, are becoming a serious problem in global public health. The three diseases have similar symptoms, making early diagnosis particularly difficult without complex molecular diagnostic equipment. Thus, simple diagnostic tools are strongly required to monitor and prevent these diseases.
In this regard, investigators at the Gwangju Institute of Science and Technology (South Korea) developed LAMDA (lab-on-paper for all-in-one molecular diagnostics), which is a mini laboratory on a paper strip. LAMDA comprises a complete LAMP system in a paper strip. LAMP (Loop-mediated isothermal amplification) is a single-tube technique for the isothermal amplification of DNA and is a low-cost alternative to detect certain diseases. In contrast to the polymerase chain reaction (PCR) technique, in which the reaction is carried out with a series of alternating temperature steps or cycles, isothermal amplification is carried out at a constant temperature, and does not require a thermal cycler. Reverse Transcription Loop-mediated Isothermal Amplification (RT-LAMP) combines LAMP with a reverse transcription step to allow the detection of RNA.
The novel LAMDA platform concentrates the entire process of nucleic acid testing including sampling, extraction, amplification, and detection into a single paper chip. To use the LAMDA test, a drop of blood serum and some drops of distilled water are applied to two pads. The liquids flow through the paper strip horizontally and reach the base of a small vertical stack of layers that extracts all the RNA from the sample and multiplies any viral RNA of the three diseases that might be present. The top layer of the vertical stack comprises individual "reaction" patches, each designed to detect one of the three diseases. After the RNA is extracted, it flows up to the top layer, where LAMP reactions cause the fluorescent indicators on a patch to become dim if its target viral RNA is present in the sample.
Results obtained with the LAMDA platform revealed that three targets, zika virus, dengue virus, and chikungunya virus, in human serum could be detected simultaneously on the all-in-one paper chip within 60 minutes at 65 degrees Celsius. The all-in-one paper chip could be used as a real-time quantitative assay for five to 5000 copies of zika virus RNA, and LAMDA performance was demonstrated with five clinical specimens of zika and dengue virus.
Senior author Dr. Min-Gon Kim, professor of chemistry at the Gwangju Institute of Science and Technology, said "We believe that with minor modifications, such as a portable system to maintain reaction temperature at 65 degrees Celsius and a means to detect the fluorescence change with a smartphone, the proposed all-in-one paper chip can become a portable, low-cost, user-friendly, sensitive, and specific nucleic acid test platform with great potential in point-of-care diagnostics. We certainly hope that our approach and achievements with LAMDA will be helpful to advance research and development of on-site medical diagnostic tools,"
The LAMDA diagnostic platform was described in the October 1, 2020, online edition of the journal Biosensors and Bioelectronics.
Related Links:
Gwangju Institute of Science and Technology
Latest Molecular Diagnostics News
- D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
- New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
- Chemiluminescence Immunoassays Support Diagnosis of Alzheimer’s Disease
- Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury
- Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression
- Simple DNA PCR-Based Lab Test to Enable Personalized Treatment of Bacterial Vaginosis
- Rapid Diagnostic Test to Halt Mother-To-Child Hepatitis B Transmission
- Simple Urine Test Could Help Patients Avoid Invasive Scans for Kidney Cancer
- New Bowel Cancer Blood Test to Improve Early Detection
- Refined Test Improves Parkinson’s Disease Diagnosis
- New Method Rapidly Diagnoses CVD Risk Via Molecular Blood Screening
- Blood Test Shows Promise for Early Detection of Dementia
- CRISPR-Based Diagnostic Test Detects Pathogens in Blood Without Amplification
- Portable Blood-Based Device Detects Colon Cancer
- New DNA Test Diagnoses Bacterial Infections Faster and More Accurately
- Innovative Bio-Detection Platform Improves Early Cancer Screening and Monitoring
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read moreCerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
In recent years, cancer immunotherapy has emerged as a promising approach where the patient's immune system is harnessed to fight cancer. One form of immunotherapy, called CAR-T-cell therapy, involves... Read more
New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
Preterm infants are particularly vulnerable due to their organs still undergoing development, which can lead to difficulties in breathing, eating, and regulating body temperature. This is especially true... Read more
Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read moreMicrobiology
view channel
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read morePathology
view channel
AI Model Predicts Patient Response to Bladder Cancer Treatment
Each year in the United States, around 81,000 new cases of bladder cancer are diagnosed, leading to approximately 17,000 deaths annually. Muscle-invasive bladder cancer (MIBC) is a severe form of bladder... Read more
New Laser-Based Method to Accelerate Cancer Diagnosis
Researchers have developed a method to improve cancer diagnostics and other diseases. Collagen, a key structural protein, plays various roles in cell activity. A novel multidisciplinary study published... Read more
New AI Model Predicts Gene Variants’ Effects on Specific Diseases
In recent years, artificial intelligence (AI) has greatly enhanced our ability to identify a vast number of genetic variants in increasingly larger populations. However, up to half of these variants are... Read more
Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
Coeliac disease is an autoimmune disorder triggered by the consumption of gluten, causing symptoms such as stomach cramps, diarrhea, skin rashes, weight loss, fatigue, and anemia. Due to the wide variation... Read moreTechnology
view channel
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Tecan Acquires ELISA Immunoassay Assets from Revvity's Cisbio Bioassays
Tecan Group (Männedorf, Switzerland) has entered into an agreement to acquire certain assets relating to key ELISA immunoassay products from Cisbio Bioassays SAS (Codolet, France), a subsidiary of the... Read more