Sequencing Could Augment Other Newborn Screening Methods
By LabMedica International staff writers Posted on 14 Sep 2020 |

Image: Newborn Exome Sequencing Could Augment Other Newborn Screening Approaches (Photo courtesy of Sushytska).
Newborn screening (NBS) was established as a public health program in the 1960s and is crucial for facilitating detection of certain medical conditions in which early intervention can prevent serious, life-threatening health problems.
Genomic sequencing can potentially expand the screening for rare hereditary disorders, but many questions surround its possible use for this purpose. Sequencing-based approaches may not replace biochemical- or phenotypic-based newborn screening, but may supplement those approaches.
Geneticists at the University of North Carolina at Chapel Hill (Chapel Hill, NC, USA) and their colleagues examined the use of exome sequencing (ES) for NBS in the North Carolina Newborn Exome Sequencing for Universal Screening (NC NEXUS) project, comparing the yield from ES used in a screening versus a diagnostic context. They recruited 17 children with inborn errors of metabolism, 28 children with hearing loss, and 61 well infants into a study. Each child underwent next-generation sequencing-based newborn screening using a panel of 466 genes. Of the 46 variants detected in this cohort through exome sequencing, 43 were confirmed orthogonally in a CLIA-certified laboratory.
The team reported that within the metabolic cohort, sequencing-based screening uncovered an abnormal result in 15 of the 17 participants. For instance, seven children previously found to have phenylketonuria had pathological variants in PAH, seven children with medium-chain acyl-coA dehydrogenase deficiency had pathogenic variants in ACADM, and one child with primary carnitine deficiency was homozygous for a pathogenic SLC22A5 missense variant.
In the hearing loss cohort, though, next-generation sequencing-based newborn screening returned positive results for only five of the 28 participants. Among those were two children who were compound heterozygotes for variants in an Usher syndrome gene and one child who had a one-base pair frameshift deletion in the GJB2 gene, which is linked to DFNB1 non-syndromic deafness.
In the full cohort, sequencing-based screening identified four children with positive results, a variant linked to familial hypercholesterolemia, a missense variant associated with mild ornithine transcarbamylase (OTC) deficiency, a splice-site variant in DSC2 tied to autosomal-dominant arrhythmogenic right ventricular dysplasia, and two F11 variants linked to autosomal recessive factor XI deficiency.
The authors concluded that as sequencing-based screening missed some metabolic and hearing loss results, and they noted that it likely would not replace current screening approaches, but could be used in addition to them. These findings suggest that sequencing might be useful as an adjunct to traditional NBS methods and that with improved detection of variants, and more extensive interpretive databases, the positive predictive value of genomic screening may improve. The study was published on August 26, 2020 in the American Journal of Human Genetics.
Related Links:
University of North Carolina at Chapel Hill
Genomic sequencing can potentially expand the screening for rare hereditary disorders, but many questions surround its possible use for this purpose. Sequencing-based approaches may not replace biochemical- or phenotypic-based newborn screening, but may supplement those approaches.
Geneticists at the University of North Carolina at Chapel Hill (Chapel Hill, NC, USA) and their colleagues examined the use of exome sequencing (ES) for NBS in the North Carolina Newborn Exome Sequencing for Universal Screening (NC NEXUS) project, comparing the yield from ES used in a screening versus a diagnostic context. They recruited 17 children with inborn errors of metabolism, 28 children with hearing loss, and 61 well infants into a study. Each child underwent next-generation sequencing-based newborn screening using a panel of 466 genes. Of the 46 variants detected in this cohort through exome sequencing, 43 were confirmed orthogonally in a CLIA-certified laboratory.
The team reported that within the metabolic cohort, sequencing-based screening uncovered an abnormal result in 15 of the 17 participants. For instance, seven children previously found to have phenylketonuria had pathological variants in PAH, seven children with medium-chain acyl-coA dehydrogenase deficiency had pathogenic variants in ACADM, and one child with primary carnitine deficiency was homozygous for a pathogenic SLC22A5 missense variant.
In the hearing loss cohort, though, next-generation sequencing-based newborn screening returned positive results for only five of the 28 participants. Among those were two children who were compound heterozygotes for variants in an Usher syndrome gene and one child who had a one-base pair frameshift deletion in the GJB2 gene, which is linked to DFNB1 non-syndromic deafness.
In the full cohort, sequencing-based screening identified four children with positive results, a variant linked to familial hypercholesterolemia, a missense variant associated with mild ornithine transcarbamylase (OTC) deficiency, a splice-site variant in DSC2 tied to autosomal-dominant arrhythmogenic right ventricular dysplasia, and two F11 variants linked to autosomal recessive factor XI deficiency.
The authors concluded that as sequencing-based screening missed some metabolic and hearing loss results, and they noted that it likely would not replace current screening approaches, but could be used in addition to them. These findings suggest that sequencing might be useful as an adjunct to traditional NBS methods and that with improved detection of variants, and more extensive interpretive databases, the positive predictive value of genomic screening may improve. The study was published on August 26, 2020 in the American Journal of Human Genetics.
Related Links:
University of North Carolina at Chapel Hill
Latest Molecular Diagnostics News
- RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms
- First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
- Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
- Novel Point-of-Care Technology Delivers Accurate HIV Results in Minutes
- Blood Test Rules Out Future Dementia Risk
- D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
- New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
- Chemiluminescence Immunoassays Support Diagnosis of Alzheimer’s Disease
- Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury
- Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression
- Simple DNA PCR-Based Lab Test to Enable Personalized Treatment of Bacterial Vaginosis
- Rapid Diagnostic Test to Halt Mother-To-Child Hepatitis B Transmission
- Simple Urine Test Could Help Patients Avoid Invasive Scans for Kidney Cancer
- New Bowel Cancer Blood Test to Improve Early Detection
- Refined Test Improves Parkinson’s Disease Diagnosis
- New Method Rapidly Diagnoses CVD Risk Via Molecular Blood Screening
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Deliver Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
Myasthenia gravis, an autoimmune disease, leads to muscle weakness that can affect a range of muscles, including those needed for basic actions like blinking, smiling, or moving. Researchers have long... Read more
AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
Lung adenocarcinoma, the most common form of non-small cell lung cancer (NSCLC), typically adopts one of six distinct growth patterns, often combining multiple patterns within a single tumor.... Read moreTechnology
view channel
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more