Cancer Cells Reprogram Immune Cells to Assist in Metastasis
|
By LabMedica International staff writers Posted on 20 Jul 2020 |

Image: A blue tumor organoid surrounded by red NK cells (Photo courtesy of Isaac Chan, MD, PhD).
Natural killer (NK) cells, a type of immune cell, are known to limit metastasis by inducing the death of cancer cells, but metastases still form in patients, so there must be ways for cancer cells to escape.
The loss of immunosurveillance is critical to breast cancer metastasis, immune checkpoint blockade has not been as effective in treating metastatic breast cancer as in melanoma or lung cancer. Breast cancer cells must overcome NK cell surveillance to form distant metastases, yet currently there is limited understanding of how metastatic cancer cells escape NK cell regulation.
Oncologists at the Johns Hopkins Kimmel Cancer Center (Baltimore, MD, USA) and their colleagues used ex vivo and in vivo models of metastasis, to establish that keratin-14+ breast cancer cells are vulnerable to NK cells. They then discovered that exposure to cancer cells causes NK cells to lose their cytotoxic ability and promote metastatic outgrowth.
Gene expression comparisons revealed that healthy NK cells have an active NK cell molecular phenotype, whereas tumor-exposed (teNK) cells resemble resting NK cells. Receptor–ligand analysis between teNK cells and tumor cells revealed multiple potential targets. The team next showed that treatment with antibodies targeting T cell immunoreceptor with Ig and ITIM domains (TIGIT), antibodies targeting killer cell leptin-like receptor G1 (KLRG1), or small-molecule inhibitors of DNA methyltransferases (DMNT) each reduced colony formation. Combinations of DNMT inhibitors with anti-TIGIT or anti-KLRG1 antibodies further reduced metastatic potential.
Isaac Chan, MD, PhD, a Medical Oncologist and lead author of the study, said, “Metastatic disease is the main driver of breast cancer deaths, and we need a deeper understanding of how and why it occurs. Our study has identified a new strategy for cancer cells to co-opt the immune system. If we could prevent or reverse natural killer cell reprogramming in patients, it could be a new way to stop metastasis and reduce breast cancer mortality.”
The authors proposed that NK-directed therapies targeting these pathways would be effective in the adjuvant setting to prevent metastatic recurrence. The process may also apply to other cancer types. Immunotherapies that target NK cells could also potentially be used together with existing immunotherapies that stimulate T cells to fight cancer. The study was published on July 9, 2020 in the Journal of Cell Biology.
Related Links:
Johns Hopkins Kimmel Cancer Center
The loss of immunosurveillance is critical to breast cancer metastasis, immune checkpoint blockade has not been as effective in treating metastatic breast cancer as in melanoma or lung cancer. Breast cancer cells must overcome NK cell surveillance to form distant metastases, yet currently there is limited understanding of how metastatic cancer cells escape NK cell regulation.
Oncologists at the Johns Hopkins Kimmel Cancer Center (Baltimore, MD, USA) and their colleagues used ex vivo and in vivo models of metastasis, to establish that keratin-14+ breast cancer cells are vulnerable to NK cells. They then discovered that exposure to cancer cells causes NK cells to lose their cytotoxic ability and promote metastatic outgrowth.
Gene expression comparisons revealed that healthy NK cells have an active NK cell molecular phenotype, whereas tumor-exposed (teNK) cells resemble resting NK cells. Receptor–ligand analysis between teNK cells and tumor cells revealed multiple potential targets. The team next showed that treatment with antibodies targeting T cell immunoreceptor with Ig and ITIM domains (TIGIT), antibodies targeting killer cell leptin-like receptor G1 (KLRG1), or small-molecule inhibitors of DNA methyltransferases (DMNT) each reduced colony formation. Combinations of DNMT inhibitors with anti-TIGIT or anti-KLRG1 antibodies further reduced metastatic potential.
Isaac Chan, MD, PhD, a Medical Oncologist and lead author of the study, said, “Metastatic disease is the main driver of breast cancer deaths, and we need a deeper understanding of how and why it occurs. Our study has identified a new strategy for cancer cells to co-opt the immune system. If we could prevent or reverse natural killer cell reprogramming in patients, it could be a new way to stop metastasis and reduce breast cancer mortality.”
The authors proposed that NK-directed therapies targeting these pathways would be effective in the adjuvant setting to prevent metastatic recurrence. The process may also apply to other cancer types. Immunotherapies that target NK cells could also potentially be used together with existing immunotherapies that stimulate T cells to fight cancer. The study was published on July 9, 2020 in the Journal of Cell Biology.
Related Links:
Johns Hopkins Kimmel Cancer Center
Latest Pathology News
- Tunable Cell-Sorting Device Holds Potential for Multiple Biomedical Applications
- AI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
- AI Tool Rapidly Analyzes Complex Cancer Images for Personalized Treatment
- Diagnostic Technology Performs Rapid Biofluid Analysis Using Single Droplet
- Novel Technology Tracks Hidden Cancer Cells Faster
- AI Tool Improves Breast Cancer Detection
- AI Tool Predicts Treatment Success in Rectal Cancer Patients
- Blood Test and Sputum Analysis Predict Acute COPD Exacerbation
- AI Tool to Transform Skin Cancer Detection with Near-Perfect Accuracy
- Unique Immune Signatures Distinguish Rare Autoimmune Condition from Multiple Sclerosis
- Simple Optical Microscopy Method Reveals Hidden Structures in Remarkable Detail
- Hydrogel-Based Technology Isolates Extracellular Vesicles for Early Disease Diagnosis
- AI Tool Improves Accuracy of Skin Cancer Detection
- Highly Sensitive Imaging Technique Detects Myelin Damage
- 3D Genome Mapping Tool to Improve Diagnosis and Treatment of Genetic Diseases
- New Molecular Analysis Tool to Improve Disease Diagnosis
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreMolecular Diagnostics
view channel
Simple Urine Test to Revolutionize Bladder Cancer Diagnosis and Treatment
Bladder cancer is one of the most common and deadly urological cancers and is marked by a high rate of recurrence. Diagnosis and follow-up still rely heavily on invasive cystoscopy or urine cytology, which... Read more
Blood Test to Enable Earlier and Simpler Detection of Liver Fibrosis
Persistent liver damage caused by alcohol misuse or viral infections can trigger liver fibrosis, a condition in which healthy tissue is gradually replaced by collagen fibers. Even after successful treatment... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreMicrobiology
view channel
Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
Sepsis kills 11 million people worldwide every year and generates massive healthcare costs. In the USA and Europe alone, sepsis accounts for USD 100 billion in annual hospitalization expenses.... Read moreRapid POC Tuberculosis Test Provides Results Within 15 Minutes
Tuberculosis remains one of the world’s deadliest infectious diseases, and reducing new cases depends on identifying individuals with latent infection before it progresses. Current diagnostic tools often... Read more
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read morePathology
view channel
Tunable Cell-Sorting Device Holds Potential for Multiple Biomedical Applications
Isolating rare cancer cells from blood is essential for diagnosing metastasis and guiding treatment decisions, but remains technically challenging. Many existing techniques struggle to balance accuracy,... Read moreAI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
Diagnosing blood disorders depends on recognizing subtle abnormalities in cell size, shape, and structure, yet this process is slow, subjective, and requires years of expert training. Even specialists... Read moreTechnology
view channel
Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Identifying which genetic variants actually cause disease remains one of the biggest challenges in genomic medicine. Each person carries tens of thousands of DNA changes, yet only a few meaningfully alter... Read more
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








