Changes in Bacterial Load and Serum Cytokine Levels Predict Likelihood of Dying from Sepsis
|
By LabMedica International staff writers Posted on 03 Jun 2020 |

Image: Cartoon representation of the molecular structure of blaTEM (beta-lactamase) protein (Photo courtesy of Wikimedia Commons)
A testing method for the sensitive and rapid quantification of serum cytokines and bacterial load can be used to predict the likelihood of a patient dying from sepsis or septic shock.
Sepsis is caused by an inflammatory immune response triggered by an infection. It is a life-threatening condition that arises when the body's response to infection causes injury to its own tissues and organs. Common signs and symptoms include fever, increased heart rate, increased breathing rate, and confusion. There may also be symptoms related to a specific infection, such as a cough with pneumonia, or painful urination with a kidney infection. In the very young, old, and those with a weakened immune system, there may be no symptoms of a specific infection and the body temperature may be low or normal, rather than high.
To facilitate the diagnosis, monitoring, and treatment of infectious diseases such as those responsible for sepsis, investigators at the University of Chicago (IL, USA) developed a sensitive and rapid quantification method for bacterial load and serum cytokines from human biological samples.
The method uses digital proximity ligation assays (dPLA) for quantifying both nucleic acid and protein markers. Droplet digital-PCR (ddPCR) readout in the PLA protocol enabled simultaneous measurement of Gram negative (GN)- and Gram positive (GP)-specific 16S rRNA genes (which reflect the abundance of all GN and GP bacteria in the patient samples), and the blaTEM (Beta-lactamase) gene (which induces resistance to the Beta-lactam antibiotics) together with IL-6 and TNF-alpha protein levels in the same patient sample.
A major advantage of this digital amplification method is its ability to quantify very small changes in the concentration of these molecules. ddPCR has a resolution of a single-DNA molecule in samples, and the investigators were able to achieve sub-femtomolar resolution for protein targets.
To demonstrate the potential of this approach, the investigators first used it to analyze bronchoalveolar lavage fluid (BALF) samples from patients with mild-to-severe asthma, and found that patients with asthma had higher levels of GN bacteria and IL-6 than healthy control subjects. They then used the assays to longitudinally characterize plasma samples from patients with septic shock, revealing several molecular features associated with recovery or death. Analyses showed that changes over time of several biomarkers, and not their absolute concentrations, were reliable predictors of patient outcomes. Application of decision tree analysis to results obtained by this method enabled prediction of patient mortality/rate of recovery from septic shock with over 90% accuracy.
"Our findings provide a new approach to the diagnosis of sepsis with the potential to identify the causal pathogen early," said contributing author Dr. Gokhan Mutlu, professor of medicine at the University of Chicago. "This will allow us to use the appropriate antibiotics earlier before the culture results are available and minimize the use of antibiotics that are needed to treat the infection. By combining the pathogen-related and host response data, we are able to predict outcomes in patients with sepsis."
"A rapid test like this is needed in many situations and could really change the game for treatment of sepsis," said senior author Dr. Savas Tay, associate professor of molecular engineering at the University of Chicago. "This is a disease that can kill everybody, regardless of your situation."
The rapid test for digital quantification of cytokines and bacteria was described in the May 25, 2020, online edition of the journal Nature Communications.
Related Links:
University of Chicago
Sepsis is caused by an inflammatory immune response triggered by an infection. It is a life-threatening condition that arises when the body's response to infection causes injury to its own tissues and organs. Common signs and symptoms include fever, increased heart rate, increased breathing rate, and confusion. There may also be symptoms related to a specific infection, such as a cough with pneumonia, or painful urination with a kidney infection. In the very young, old, and those with a weakened immune system, there may be no symptoms of a specific infection and the body temperature may be low or normal, rather than high.
To facilitate the diagnosis, monitoring, and treatment of infectious diseases such as those responsible for sepsis, investigators at the University of Chicago (IL, USA) developed a sensitive and rapid quantification method for bacterial load and serum cytokines from human biological samples.
The method uses digital proximity ligation assays (dPLA) for quantifying both nucleic acid and protein markers. Droplet digital-PCR (ddPCR) readout in the PLA protocol enabled simultaneous measurement of Gram negative (GN)- and Gram positive (GP)-specific 16S rRNA genes (which reflect the abundance of all GN and GP bacteria in the patient samples), and the blaTEM (Beta-lactamase) gene (which induces resistance to the Beta-lactam antibiotics) together with IL-6 and TNF-alpha protein levels in the same patient sample.
A major advantage of this digital amplification method is its ability to quantify very small changes in the concentration of these molecules. ddPCR has a resolution of a single-DNA molecule in samples, and the investigators were able to achieve sub-femtomolar resolution for protein targets.
To demonstrate the potential of this approach, the investigators first used it to analyze bronchoalveolar lavage fluid (BALF) samples from patients with mild-to-severe asthma, and found that patients with asthma had higher levels of GN bacteria and IL-6 than healthy control subjects. They then used the assays to longitudinally characterize plasma samples from patients with septic shock, revealing several molecular features associated with recovery or death. Analyses showed that changes over time of several biomarkers, and not their absolute concentrations, were reliable predictors of patient outcomes. Application of decision tree analysis to results obtained by this method enabled prediction of patient mortality/rate of recovery from septic shock with over 90% accuracy.
"Our findings provide a new approach to the diagnosis of sepsis with the potential to identify the causal pathogen early," said contributing author Dr. Gokhan Mutlu, professor of medicine at the University of Chicago. "This will allow us to use the appropriate antibiotics earlier before the culture results are available and minimize the use of antibiotics that are needed to treat the infection. By combining the pathogen-related and host response data, we are able to predict outcomes in patients with sepsis."
"A rapid test like this is needed in many situations and could really change the game for treatment of sepsis," said senior author Dr. Savas Tay, associate professor of molecular engineering at the University of Chicago. "This is a disease that can kill everybody, regardless of your situation."
The rapid test for digital quantification of cytokines and bacteria was described in the May 25, 2020, online edition of the journal Nature Communications.
Related Links:
University of Chicago
Latest Molecular Diagnostics News
- Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
- Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
- Two-in-One DNA Analysis Improves Diagnostic Accuracy While Saving Time and Costs
- “Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
- New Tool Maps Chromosome Shifts in Cancer Cells to Predict Tumor Evolution
- Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
- Newly-Identified Parkinson’s Biomarkers to Enable Early Diagnosis Via Blood Tests
- New Blood Test Could Detect Pancreatic Cancer at More Treatable Stage
- Liquid Biopsy Could Replace Surgical Biopsy for Diagnosing Primary Central Nervous Lymphoma
- New Tool Reveals Hidden Metabolic Weakness in Blood Cancers
- World's First Blood Test Distinguishes Between Benign and Cancerous Lung Nodules
- Rapid Test Uses Mobile Phone to Identify Severe Imported Malaria Within Minutes
- Gut Microbiome Signatures Predict Long-Term Outcomes in Acute Pancreatitis
- Blood Test Promises Faster Answers for Deadly Fungal Infections
- Blood Test Could Detect Infection Exposure History
- Urine-Based MRD Test Tracks Response to Bladder Cancer Surgery
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







