LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Biomarker Panel Predicts Severity of Pollen Allergy Symptoms

By LabMedica International staff writers
Posted on 12 May 2020
Image: Scanning electron microscope image (500x magnification) of pollen grains from a variety of common plants (Photo courtesy of Dartmouth Electron Microscope Facility, Dartmouth College (via Wikimedia Commons)
Image: Scanning electron microscope image (500x magnification) of pollen grains from a variety of common plants (Photo courtesy of Dartmouth Electron Microscope Facility, Dartmouth College (via Wikimedia Commons)
A team of German researchers has identified a panel of biomarkers that predicts the severity of allergic symptoms even before the start of the pollen season.

In addition to physical symptoms such as sneezing, rhinitis, and watery eyes pollen exposure induces local and systemic allergic immune responses in sensitized individuals. The kinetics of symptom expression under natural pollen exposure have never been systematically studied, especially in subjects without allergy.

To rectify this situation, investigators at the Helmholtz Zentrum München - German Research Center for Environmental Health (Munich, Germany) compared humoral immune response kinetics in a panel study of subjects with seasonal allergic rhinitis (SAR) and subjects without allergy.

Subjects were monitored over a period of one year. In addition to a digital symptom diary kept daily by the study participants, the investigators analyzed samples of blood and nasal secretions. They then compared immune variables (cytokines, chemokines, and pollen-specific immunoglobulins) in samples obtained during and after the pollen season.

Results revealed that allergic symptoms appeared following exposure to concentrations of airborne pollen in subjects with SAR with a time lag between 0 and 13 days depending on the pollen type. Of the seven nonallergic subjects four also exhibited in-season symptoms whereas three did not. Cumulative symptoms in those without allergy were lower than in those with SAR but followed pollen exposure with similar kinetics. Principal component analysis and Spearman correlations identified nasal levels of IL-8, IL-33, and Betula verrucosa 1-specific IgG4 (sIgG4) and Betula verrucosa 1-specific IgE antibodies as predictive for seasonal symptom severity.

First author Mehmet Gökkaya, a researcher at the Helmholtz Zentrum München - German Research Center for Environmental Health, said, "The identification of biomarkers helps us in three ways. Firstly, by predicting the severity of nasal symptoms we can better identify the patients who benefit the most from therapeutic treatment. Secondly, biomarkers can help us understand the processes at work during the development of allergies in non-allergic patients and so help us to be ultimately able to prevent them. And thirdly, biomarkers can be used to identify the physiological processes that originally cause these symptoms. Possibly this could be a new starting point for the development of novel therapeutics."

The study was published in the April 6, 2020, online edition of the Journal of Allergy and Clinical Immunology.

Related Links:
Helmholtz Zentrum München - German Research Center for Environmental Health

Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Pipette
Accumax Smart Series
Gold Member
Immunochromatographic Assay
CRYPTO Cassette

Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more