Presenilin1 Gene Characteristics Used as Alzheimer's Disease Biomarker
By LabMedica International staff writers Posted on 11 Mar 2020 |

Image: The QIAcube Connect is for fully automated nucleic acid extraction with QIAGEN’s spin-column kits (Photo courtesy of QIAGEN).
Alzheimer's Disease manifests as a familial disease with monogenic inheritance and early onset (Early Onset AD: EOAD), or as a sporadic, multifactorial, late-onset disease (Late Onset AD: LOAD). The latter accounts for more than 90% of all cases and its causes are unknown.
The Presenilin1 (PSEN1) gene encodes the catalytic peptide of the γ-secretase complex, a key enzyme that cleaves the amyloid-β protein precursor (AβPP), to generate the amyloid-β (Aβ) peptides, involved in Alzheimer’s Disease (AD). Other substrates of the γ-secretase, such as E-cadherin and Notch1, are involved in neurodevelopment and hematopoiesis.
A team of international scientists working with the Sapienza University of Rome (Rome, Italy) analyzed patterns of DNA modification that affect the expression of the PSEN1 gene during brain development and during the progression of Alzheimer's in mice. They checked the results in humans by analyzing post-mortem human brain tissue from Alzheimer's patients and from prenatal and postnatal babies and adolescents. To see whether changes to DNA methylation could be detected in human blood, they analyzed blood samples from 20 patients with late-onset Alzheimer's disease, comparing the results to 20 healthy controls.
Assessment of CpG and non-CpG DNA methylation was performed by bisulphite DNA modification and genomic sequencing using non-CpG Methylation-Insensitive Primers (MIPs), previously described (HSPS1BisF1 and HSPS1BisR1 for the human DNA, MMPS1BisF1). Sequencing reactions of purified plasmid DNA were performed by the cycle sequencing method using the ABI PRISM 3130xl genetic analyzer (Applied Biosystems, Foster City, CA, USA). Total RNA was extracted using the QIAGEN RNeasy Lipid Tissue mini kit and the QIAcube Connect instrument (QIAGEN, Hilden, Germany).
The results from post-mortem human brain tissue found upregulation of the PSEN1 gene in Alzheimer's patients. In both sexes, there was a significant inverse relationship between the extent of gene expression and DNA methylation. The analysis of blood samples was able to detect lower PSEN1-related DNA methylation in Alzheimer's patients compared to controls. The difference was significant, although not as large as in brain samples. As lower methylation was detectable in the blood, and is associated with higher expression of PSEN1, it could offer a new way to diagnose Alzheimer's early, and less invasively, than sampling brain tissue.
Andrea Fuso, PhD an assistant professor and senior author of the study, said, “We've detected an early sign of the disease in a DNA modification, or epigenetic marker, that was previously overlooked, and that could even provide a starting point for developing new therapies, as well as earlier diagnosis. Our results offer an exciting new area of investigation, deploying the methods we used to study DNA methylation so that modifications won't be missed. If found to be causal, our findings would provide a starting point for developing epigenetic therapies.” The study was published on February 5, 2020 in the journal Epigenetics.
Related Links:
Sapienza University of Rome
Applied Biosystems
QIAGEN
The Presenilin1 (PSEN1) gene encodes the catalytic peptide of the γ-secretase complex, a key enzyme that cleaves the amyloid-β protein precursor (AβPP), to generate the amyloid-β (Aβ) peptides, involved in Alzheimer’s Disease (AD). Other substrates of the γ-secretase, such as E-cadherin and Notch1, are involved in neurodevelopment and hematopoiesis.
A team of international scientists working with the Sapienza University of Rome (Rome, Italy) analyzed patterns of DNA modification that affect the expression of the PSEN1 gene during brain development and during the progression of Alzheimer's in mice. They checked the results in humans by analyzing post-mortem human brain tissue from Alzheimer's patients and from prenatal and postnatal babies and adolescents. To see whether changes to DNA methylation could be detected in human blood, they analyzed blood samples from 20 patients with late-onset Alzheimer's disease, comparing the results to 20 healthy controls.
Assessment of CpG and non-CpG DNA methylation was performed by bisulphite DNA modification and genomic sequencing using non-CpG Methylation-Insensitive Primers (MIPs), previously described (HSPS1BisF1 and HSPS1BisR1 for the human DNA, MMPS1BisF1). Sequencing reactions of purified plasmid DNA were performed by the cycle sequencing method using the ABI PRISM 3130xl genetic analyzer (Applied Biosystems, Foster City, CA, USA). Total RNA was extracted using the QIAGEN RNeasy Lipid Tissue mini kit and the QIAcube Connect instrument (QIAGEN, Hilden, Germany).
The results from post-mortem human brain tissue found upregulation of the PSEN1 gene in Alzheimer's patients. In both sexes, there was a significant inverse relationship between the extent of gene expression and DNA methylation. The analysis of blood samples was able to detect lower PSEN1-related DNA methylation in Alzheimer's patients compared to controls. The difference was significant, although not as large as in brain samples. As lower methylation was detectable in the blood, and is associated with higher expression of PSEN1, it could offer a new way to diagnose Alzheimer's early, and less invasively, than sampling brain tissue.
Andrea Fuso, PhD an assistant professor and senior author of the study, said, “We've detected an early sign of the disease in a DNA modification, or epigenetic marker, that was previously overlooked, and that could even provide a starting point for developing new therapies, as well as earlier diagnosis. Our results offer an exciting new area of investigation, deploying the methods we used to study DNA methylation so that modifications won't be missed. If found to be causal, our findings would provide a starting point for developing epigenetic therapies.” The study was published on February 5, 2020 in the journal Epigenetics.
Related Links:
Sapienza University of Rome
Applied Biosystems
QIAGEN
Latest Molecular Diagnostics News
- Novel Autoantibody Against DAGLA Discovered in Cerebellitis
- Blood Test Could Identify Patients at Risk for Severe Scleroderma
- Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
- Rapid Blood Test Identifies Pre-Symptomatic Patients with Parkinson’s Disease
- Blood Test for Early Alzheimer's Detection Achieves Over 90% Accuracy
- RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms
- First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
- Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
- Novel Point-of-Care Technology Delivers Accurate HIV Results in Minutes
- Blood Test Rules Out Future Dementia Risk
- D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
- New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
- Chemiluminescence Immunoassays Support Diagnosis of Alzheimer’s Disease
- Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury
- Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression
- Simple DNA PCR-Based Lab Test to Enable Personalized Treatment of Bacterial Vaginosis
Channels
Clinical Chemistry
view channel
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more
New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
"Liquid biopsy" technology, which relies on blood tests for early cancer detection and monitoring cancer burden in patients, has the potential to transform cancer care. However, detecting the mutational... Read more
"Metal Detector" Algorithm Hunts Down Vulnerable Tumors
Scientists have developed an algorithm capable of functioning as a "metal detector" to identify vulnerable tumors, marking a significant advancement in personalized cancer treatment. This breakthrough... Read more
Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
Pancreatic cancer is often asymptomatic in its early stages, making it difficult to detect until it has progressed. Consequently, only 15% of pancreatic cancers are diagnosed early enough to allow for... Read moreTechnology
view channel
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more