Monogenic Hypercholesterolemia Increases Cardiovascular Disease Risk
By LabMedica International staff writers Posted on 03 Mar 2020 |

Image: The Variant II Turbo Hemoglobin Testing System combines High Performance Liquid Chromatography (HPLC) precise and variant detection with fast throughput to provide a comprehensive solution for HbA1c testing (Photo courtesy of Bio-Rad).
Monogenic familial hypercholesterolemia (FH) is associated with lifelong elevations in low-density lipoprotein cholesterol (LDL-C) levels and increased risk of atherosclerotic cardiovascular disease (CVD).
However, many individuals' hypercholesterolemia has a polygenic rather than a monogenic cause, and it is unclear if polygenic variants also alter the risk of CVD. Polygenic hypercholesterolemia is estimated to account for approximately 20% to 30% of patients with clinical FH. The risk of CVD for individuals with polygenic hypercholesterolemia likely depends on the reference group.
A team of scientists from University of British Columbia (Vancouver, BC, Canada) conducted a genetic-association case-control cohort study on 48,741 individuals who were recruited by the UK Biobank, using genotyping array and exome sequencing data to identify individuals with monogenic or polygenic hypercholesterolemia. They assessed whether any genetic variant for hypercholesterolemia altered the risk of atherosclerotic CVD, and evaluated how this risk compared with that of nongenetic hypercholesterolemia.
Serum biochemistry assays were conducted on a Beckman Coulter AU5800 analyzer (Beckman Coulter, High Wycombe, UK) or for the glycated hemoglobin (HbA1c) by High Performance Liquid Chromatography using Bio-Rad Variant II Turbo analyzers (Bio-Rad Laboratories, Hercules, CA, USA). Genotyping array and exome sequencing data from the UK Biobank cohort were used to identify individuals with monogenic (LDLR, APOB, and PCSK9) or polygenic hypercholesterolemia (LDL-C polygenic score >95th percentile based on 223 single-nucleotide variants in the entire cohort). The data were analyzed from July 1, 2019, to December 30, 2019.
The team reported a monogenic cause for hypercholesterolemia was found in 277 participants and a polygenic cause in 2,379 participants. Overall, monogenic FH-associated variants were found in the LDLR gene for 257 individuals, in PCSK9 for 13 individuals, and in APOB for seven individuals. They identified a total of 121 unique monogenic FH-associated variants, most of which were in LDLR. Both polygenic and monogenic causes of hypercholesterolemia appeared to be associated with an increased risk of CVD compared with hypercholesterolemia with an undetermined cause. However, monogenic hypercholesterolemia was associated with the greatest risk of CVD.
The authors concluded that monogenic FH and polygenic hypercholesterolemia were associated with an increased CVD risk compared with hypercholesterolemia without an identifiable genetic cause, with monogenic FH associated with the greatest risk. These results suggest that a possible genetic cause of hypercholesterolemia is associated with CVD risk and underscores the importance of genetic profiling to better stratify risk in patients. The study was published on February 12, 2020 in the journal JAMA Cardiology.
Related Links:
University of British Columbia
Beckman Coulter
Bio-Rad Laboratories
However, many individuals' hypercholesterolemia has a polygenic rather than a monogenic cause, and it is unclear if polygenic variants also alter the risk of CVD. Polygenic hypercholesterolemia is estimated to account for approximately 20% to 30% of patients with clinical FH. The risk of CVD for individuals with polygenic hypercholesterolemia likely depends on the reference group.
A team of scientists from University of British Columbia (Vancouver, BC, Canada) conducted a genetic-association case-control cohort study on 48,741 individuals who were recruited by the UK Biobank, using genotyping array and exome sequencing data to identify individuals with monogenic or polygenic hypercholesterolemia. They assessed whether any genetic variant for hypercholesterolemia altered the risk of atherosclerotic CVD, and evaluated how this risk compared with that of nongenetic hypercholesterolemia.
Serum biochemistry assays were conducted on a Beckman Coulter AU5800 analyzer (Beckman Coulter, High Wycombe, UK) or for the glycated hemoglobin (HbA1c) by High Performance Liquid Chromatography using Bio-Rad Variant II Turbo analyzers (Bio-Rad Laboratories, Hercules, CA, USA). Genotyping array and exome sequencing data from the UK Biobank cohort were used to identify individuals with monogenic (LDLR, APOB, and PCSK9) or polygenic hypercholesterolemia (LDL-C polygenic score >95th percentile based on 223 single-nucleotide variants in the entire cohort). The data were analyzed from July 1, 2019, to December 30, 2019.
The team reported a monogenic cause for hypercholesterolemia was found in 277 participants and a polygenic cause in 2,379 participants. Overall, monogenic FH-associated variants were found in the LDLR gene for 257 individuals, in PCSK9 for 13 individuals, and in APOB for seven individuals. They identified a total of 121 unique monogenic FH-associated variants, most of which were in LDLR. Both polygenic and monogenic causes of hypercholesterolemia appeared to be associated with an increased risk of CVD compared with hypercholesterolemia with an undetermined cause. However, monogenic hypercholesterolemia was associated with the greatest risk of CVD.
The authors concluded that monogenic FH and polygenic hypercholesterolemia were associated with an increased CVD risk compared with hypercholesterolemia without an identifiable genetic cause, with monogenic FH associated with the greatest risk. These results suggest that a possible genetic cause of hypercholesterolemia is associated with CVD risk and underscores the importance of genetic profiling to better stratify risk in patients. The study was published on February 12, 2020 in the journal JAMA Cardiology.
Related Links:
University of British Columbia
Beckman Coulter
Bio-Rad Laboratories
Latest Molecular Diagnostics News
- First-in-Class Diagnostic Blood Test Detects Axial Spondyloarthritis
- New Molecular Label to Help Develop Simpler and Faster Tuberculosis Tests
- Biomarker Discovery Paves Way for Blood Tests to Detect and Treat Osteoarthritis
- Liquid Biopsy Assay Detects Recurrence in CRC Patients Prior to Imaging
- Ultra Fast Synovial Fluid Test Diagnoses Osteoarthritis and Rheumatoid Arthritis In 10 Minutes
- Genetic-Based Tool Predicts Survival Outcomes of Pancreatic Cancer Patients
- Urine Test Diagnoses Early-Stage Prostate Cancer
- New Genetic Tool Analyzes Umbilical Cord Blood to Predict Future Disease
- Spinal Fluid Biomarker for Parkinson’s Disease Offers Early and Accurate Diagnosis
- Revolutionary Blood Test Detects 30 Different Types of Cancers with 98% Accuracy
- Simple Blood Test Better Predicts Heart Disease Risk
- New Blood Test Detects 12 Common Cancers Before Symptoms Appear
- Blood Test Could Predict Relapse of Autoimmune Blood Vessel Disease
- First-of-its-Kind Blood Test Detects Trauma-Related Diseases
- Key Gene Identified in Common Heart Disease Unlocks Life-Saving Diagnostic Potential
- Cheap Cell-Free DNA Based Test Accurately Predicts Preterm Birth
Channels
Clinical Chemistry
view channelMass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read more
Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse
Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New Test Diagnoses Bacterial Meningitis Quickly and Accurately
Bacterial meningitis is a potentially fatal condition, with one in six patients dying and half of the survivors experiencing lasting symptoms. Therefore, rapid diagnosis and treatment are critical.... Read more
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read more
AI-Driven Analysis of Digital Pathology Images to Improve Pediatric Sarcoma Subtyping
Pediatric sarcomas are rare and diverse tumors that can develop in various types of soft tissue, such as muscle, tendons, fat, blood or lymphatic vessels, nerves, or the tissue surrounding joints.... Read more
AI-Based Model Predicts Kidney Cancer Therapy Response
Each year, nearly 435,000 individuals are diagnosed with clear cell renal cell carcinoma (ccRCC), making it the most prevalent subtype of kidney cancer. When the disease spreads, anti-angiogenic therapies... Read more
Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more