Genetic Risk Factors Found in Gestational Diabetes
By LabMedica International staff writers Posted on 26 Feb 2020 |

Image: Illumina microarrays are a robust system that allow investigators to find variants in simple nucleotide polymorphisms (SNPs). The microarrays are subsequently scanned in the iScan system (Photo courtesy of LABSERGEN LANGEBIO).
Gestational diabetes mellitus (GDM) is a common pregnancy complication affecting 6%–15% of pregnancies globally. Although the condition resolves after delivery in most cases, women with a history of GDM have a more than sevenfold increased risk of developing type 2 diabetes (T2D) compared with women with a normoglycemic pregnancy.
Individual single nucleotide polymorphisms (SNPs) and genetic risk scores (GRSs) capturing the cumulative risk conferred by these SNPs have been associated with T2D risk in the general population. However, as women with a history of GDM already have an elevated baseline genetic risk for T2D compared with the general population. The role genetic factors play in the development of T2D among women with a history of GDM may differ from that in the general population.
A team of scientists at the at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (Rockville, MD, USA) sought to gauge whether genetic risk scores could distinguish women with a history of gestational diabetes who develop T2D from those who do not. They applied this score to two population cohorts, one from the USA and one from Denmark, to find that women with high genetic risk scores were more likely to go on to develop T2D. Their findings also indicated that eating healthy could mitigate some of that risk.
Genotyping was performed using the TaqMan quantitative polymerase chain reaction (PCR) method (Applied Biosystems, Foster City, CA, USA) in 1,855 study participants from the USA and 603 from Denmark. In all, 112 candidate SNPs were selected based on previous genome- wide association studies (GWAS) of T2D. Genotyping was additionally performed using high- density SNP markers platforms, including, HumanHap, Infinium, OncoArray or Infinium HumanCoreExome (Illumina, San Diego, CA, USA).
Based on recent genome-wide association studies in European populations, the scientists identified 59 SNPs associated with T2D risk that they bundled into a genetic risk score for the condition. They then genotyped 2,434 white women with a history of gestational diabetes from the US Nurses' Health Study II and the Danish National Birth Cohort and determined their genetic risk scores. Of the women in the study, 601 developed T2D during the median follow-up period of 21 years for the US cohort and 13 years for the Danish cohort.
A high genetic risk score was associated with increased risk of developing T2D in both the US and Danish cohorts. When broken up by quartiles, the highest-scoring group was 19% more likely to develop T2D than the lowest scoring group. Every five risk alleles were associated with a 7% increase in T2D risk in the US cohort and 9% increase in risk in the Danish cohort.
The authors concluded that in a study based on two independent populations with a long follow- up period, they observed a significant association of genetic risk factors with the development of T2D. The magnitude of association, however, was modest. The study was published on February 13, 2020 in the journal BMJ Open Diabetes Research & Care.
Related Links:
Eunice Kennedy Shriver National Institute of Child Health and Human Development
Applied Biosystems
Illumina
Individual single nucleotide polymorphisms (SNPs) and genetic risk scores (GRSs) capturing the cumulative risk conferred by these SNPs have been associated with T2D risk in the general population. However, as women with a history of GDM already have an elevated baseline genetic risk for T2D compared with the general population. The role genetic factors play in the development of T2D among women with a history of GDM may differ from that in the general population.
A team of scientists at the at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (Rockville, MD, USA) sought to gauge whether genetic risk scores could distinguish women with a history of gestational diabetes who develop T2D from those who do not. They applied this score to two population cohorts, one from the USA and one from Denmark, to find that women with high genetic risk scores were more likely to go on to develop T2D. Their findings also indicated that eating healthy could mitigate some of that risk.
Genotyping was performed using the TaqMan quantitative polymerase chain reaction (PCR) method (Applied Biosystems, Foster City, CA, USA) in 1,855 study participants from the USA and 603 from Denmark. In all, 112 candidate SNPs were selected based on previous genome- wide association studies (GWAS) of T2D. Genotyping was additionally performed using high- density SNP markers platforms, including, HumanHap, Infinium, OncoArray or Infinium HumanCoreExome (Illumina, San Diego, CA, USA).
Based on recent genome-wide association studies in European populations, the scientists identified 59 SNPs associated with T2D risk that they bundled into a genetic risk score for the condition. They then genotyped 2,434 white women with a history of gestational diabetes from the US Nurses' Health Study II and the Danish National Birth Cohort and determined their genetic risk scores. Of the women in the study, 601 developed T2D during the median follow-up period of 21 years for the US cohort and 13 years for the Danish cohort.
A high genetic risk score was associated with increased risk of developing T2D in both the US and Danish cohorts. When broken up by quartiles, the highest-scoring group was 19% more likely to develop T2D than the lowest scoring group. Every five risk alleles were associated with a 7% increase in T2D risk in the US cohort and 9% increase in risk in the Danish cohort.
The authors concluded that in a study based on two independent populations with a long follow- up period, they observed a significant association of genetic risk factors with the development of T2D. The magnitude of association, however, was modest. The study was published on February 13, 2020 in the journal BMJ Open Diabetes Research & Care.
Related Links:
Eunice Kennedy Shriver National Institute of Child Health and Human Development
Applied Biosystems
Illumina
Latest Molecular Diagnostics News
- Blood Test Could Predict Relapse of Autoimmune Blood Vessel Disease
- First-of-its-Kind Blood Test Detects Trauma-Related Diseases
- Key Gene Identified in Common Heart Disease Unlocks Life-Saving Diagnostic Potential
- Cheap Cell-Free DNA Based Test Accurately Predicts Preterm Birth
- RNA Blood Test Detects Cancers and Resistance to Treatment
- IL-6 Outperforms Traditional Tests for Early Sepsis Detection
- Simple Blood Test Improves Heart Attack and Stroke Risk Prediction
- Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
- Novel Autoantibody Against DAGLA Discovered in Cerebellitis
- Blood Test Could Identify Patients at Risk for Severe Scleroderma
- Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
- Rapid Blood Test Identifies Pre-Symptomatic Patients with Parkinson’s Disease
- Blood Test for Early Alzheimer's Detection Achieves Over 90% Accuracy
- RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms
- First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
- Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more
World’s First AI Model for Thyroid Cancer Diagnosis Achieves Over 90% Accuracy
Thyroid cancer is one of the most common cancers worldwide, and its precise management typically relies on two primary systems: (1) the 8th edition of the American Joint Committee on Cancer (AJCC) or ... Read more
Breakthrough Diagnostic Approach to Significantly Improve TB Detection
Tuberculosis (TB) remains the deadliest infectious disease globally, with 10.8 million new cases and 1.25 million deaths reported in 2023. Early detection through effective screening is crucial in identifying... Read more
Rapid, Ultra-Sensitive, PCR-Free Detection Method Makes Genetic Analysis More Accessible
Genetic testing has been an important method for detecting infectious diseases, diagnosing early-stage cancer, ensuring food safety, and analyzing environmental DNA. For a long time, polymerase chain reaction... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more