Modular Targeted Capture Assay Detects Clinically Significant Oncology Alterations
|
By LabMedica International staff writers Posted on 19 Feb 2020 |

Image: Copy number variants (CNVs) detection directly by UW-OncoPlex sequencing; depicted are examples from a melanoma and colon cancer sample (Photo courtesy of Noah G. Hoffman, MD, PhD).
The rapid discovery of clinically significant genetic variants has translated to next-generation sequencing assays becoming out-of-date by the time they are designed, validated, and implemented.
The need to comprehensively assess clinical cancer specimens for an expanding list of alterations critical to therapeutic decision making led to the adoption of large “fixed-content” genetic panels that utilized massively parallel sequencing, more commonly referred to as next-generation sequencing (NGS).
Medical Laboratory Scientists at the University of Washington Medical Center (Seattle, WA, USA) used DNA samples for the validation of their OncoPlex Cancer Gene Panel version 6 (UW-OPXv6) were derived from 108 unique specimens from 29 different adult and pediatric neoplasms including central nervous system (CNS) malignancies, leukemia/lymphoma, melanoma, sarcoma, and carcinomas of the lung, breast, endometrium, bowel, and prostate, in addition to five germline samples. UW-OncoPlex is a multiplexed mutation assay for tumor tissue that assesses mutations >350 genes related to cancer treatment, prognosis, or diagnosis.
The team described the validation of OncoPlex version 6 (OPXv6) for the detection of single nucleotide variants (SNVs), insertions and deletions (indels), copy number variants (CNVs), structural variants (SVs), microsatellite instability (MSI), and tumor mutational burden (TMB) in a panel of 340 genes.
All samples had prior molecular characterization via orthogonal clinical tests including both laboratory-developed amplicon-based and hybrid-capture-based NGS assays and/or a custom commercial RNA sequencing assay (FusionPlex, ArcherDx, Boulder, CO, USA). DNA was extracted using one or more kits from Qiagen (Qiagen, Valencia, CA, USA) depending on specimen type and nucleic acid extraction desired. Libraries were prepared from genomic and cell-free DNA, hybridized to a custom panel of xGen Lockdown probes, and sequenced on Illumina platforms (Illumina, San Diego, CA, USA). Sequences were processed through a custom bioinformatics pipeline, and variant calls were compared to prior orthogonal clinical results.
The scientists reported that the performance characteristics of OPXv6 are excellent for all tested variant classes (SNVs, Indels, SVs, and CNVs), both using standard protocols and in the setting of decreased DNA input and multiple methods of nucleic acid extraction. Accuracy was 99% for SNVs ≥5% allele fraction, 98% for indels, 97% for SVs, 99% for CNVs, 100% for MSI, and 100% for TMB. Library preparation turnaround time decreased by 40%, and sequencing quality improved with a 2.5-fold increase in average sequencing coverage and 4-fold increase in percent on-target.
The authors concluded that OPXv6 demonstrates improvements over prior UW-OncoPlex versions including reduced capture cost, improved sequencing quality, and decreased time to result. The modular capture probe design also provides a nimble laboratory response in addressing the expansions necessary to meet the needs of the continuously evolving field of molecular oncology. The study was published on February 3, 2020 in the journal Practical Laboratory Medicine.
Related Links:
University of Washington Medical Center
ArcherDx
Qiagen
Illumina
The need to comprehensively assess clinical cancer specimens for an expanding list of alterations critical to therapeutic decision making led to the adoption of large “fixed-content” genetic panels that utilized massively parallel sequencing, more commonly referred to as next-generation sequencing (NGS).
Medical Laboratory Scientists at the University of Washington Medical Center (Seattle, WA, USA) used DNA samples for the validation of their OncoPlex Cancer Gene Panel version 6 (UW-OPXv6) were derived from 108 unique specimens from 29 different adult and pediatric neoplasms including central nervous system (CNS) malignancies, leukemia/lymphoma, melanoma, sarcoma, and carcinomas of the lung, breast, endometrium, bowel, and prostate, in addition to five germline samples. UW-OncoPlex is a multiplexed mutation assay for tumor tissue that assesses mutations >350 genes related to cancer treatment, prognosis, or diagnosis.
The team described the validation of OncoPlex version 6 (OPXv6) for the detection of single nucleotide variants (SNVs), insertions and deletions (indels), copy number variants (CNVs), structural variants (SVs), microsatellite instability (MSI), and tumor mutational burden (TMB) in a panel of 340 genes.
All samples had prior molecular characterization via orthogonal clinical tests including both laboratory-developed amplicon-based and hybrid-capture-based NGS assays and/or a custom commercial RNA sequencing assay (FusionPlex, ArcherDx, Boulder, CO, USA). DNA was extracted using one or more kits from Qiagen (Qiagen, Valencia, CA, USA) depending on specimen type and nucleic acid extraction desired. Libraries were prepared from genomic and cell-free DNA, hybridized to a custom panel of xGen Lockdown probes, and sequenced on Illumina platforms (Illumina, San Diego, CA, USA). Sequences were processed through a custom bioinformatics pipeline, and variant calls were compared to prior orthogonal clinical results.
The scientists reported that the performance characteristics of OPXv6 are excellent for all tested variant classes (SNVs, Indels, SVs, and CNVs), both using standard protocols and in the setting of decreased DNA input and multiple methods of nucleic acid extraction. Accuracy was 99% for SNVs ≥5% allele fraction, 98% for indels, 97% for SVs, 99% for CNVs, 100% for MSI, and 100% for TMB. Library preparation turnaround time decreased by 40%, and sequencing quality improved with a 2.5-fold increase in average sequencing coverage and 4-fold increase in percent on-target.
The authors concluded that OPXv6 demonstrates improvements over prior UW-OncoPlex versions including reduced capture cost, improved sequencing quality, and decreased time to result. The modular capture probe design also provides a nimble laboratory response in addressing the expansions necessary to meet the needs of the continuously evolving field of molecular oncology. The study was published on February 3, 2020 in the journal Practical Laboratory Medicine.
Related Links:
University of Washington Medical Center
ArcherDx
Qiagen
Illumina
Latest Molecular Diagnostics News
- New Biomarkers Predict Disease Severity in Children with RSV Bronchiolitis
- CTC Measurement Blood Test Guides Treatment Decisions in Metastatic Breast Cancer Subtype
- Multiplex Antibody Assay Could Transform Hepatitis B Immunity Testing
- Genetic Testing Improves Comprehensive Risk-Based Screening for Breast Cancer
- Urine Test Could Reveal Real Age and Life Span
- Genomic Test Identifies African Americans at Risk for Early Prostate Cancer Recurrence
- Blood Test Could Identify Biomarker Signature of Cerebral Malaria
- World’s First Biomarker Blood Test to Assess MS Progression
- Neuron-Derived Extracellular Vesicles Could Improve Alzheimer’s Diagnosis
- Sample Prep Instrument to Empower Decentralized PCR Testing for Tuberculosis
- Endometriosis Blood Test Could Replace Invasive Laparoscopic Diagnosis
- World's First NGS-Based Diagnostic Platform Fully Automates Sample-To-Result Process Within Single Device
- Rapid Diagnostic Breakthrough Simultaneously Detects Resistance and Virulence in Klebsiella Pneumoniae
- DNA Detection Platform Enables Real-Time Molecular Detection
- STI Molecular Test Delivers Rapid POC Results for Treatment Guidance
- Blood Biomarker Improves Early Brain Injury Prognosis After Cardiac Arrest
Channels
Clinical Chemistry
view channel
Blood Test Could Predict and Identify Early Relapses in Myeloma Patients
Multiple myeloma is an incurable cancer of the bone marrow, and while many patients now live for more than a decade after diagnosis, a significant proportion relapse much earlier with poor outcomes.... Read more
Compact Raman Imaging System Detects Subtle Tumor Signals
Accurate cancer diagnosis often depends on labor-intensive tissue staining and expert pathological review, which can delay results and limit access to rapid screening. These conventional methods also make... Read moreHematology
view channel
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read more
Blood Test Could Identify Colon Cancer Patients to Benefit from NSAIDs
Colon cancer remains a major cause of cancer-related illness, with many patients facing relapse even after surgery and chemotherapy. Up to 40% of people with stage III disease experience recurrence, highlighting... Read moreMicrobiology
view channel
New UTI Diagnosis Method Delivers Antibiotic Resistance Results 24 Hours Earlier
Urinary tract infections affect around 152 million people every year, making them one of the most common bacterial infections worldwide. In routine medical practice, diagnosis often relies on rapid urine... Read more
Breakthroughs in Microbial Analysis to Enhance Disease Prediction
Microorganisms shape human health, ecosystems, and the planet’s climate, yet identifying them and understanding how they are related remains a major scientific challenge. Even with modern DNA sequencing,... Read morePathology
view channel
Genetics and AI Improve Diagnosis of Aortic Stenosis
Aortic stenosis is a progressive narrowing of the aortic valve that restricts blood flow from the heart and can be fatal if left untreated. There are currently no medical therapies that can prevent or... Read more
AI Tool Simultaneously Identifies Genetic Mutations and Disease Type
Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Tumor Signals in Saliva and Blood Enable Non-Invasive Monitoring of Head and Neck Cancer
Head and neck cancers are among the most aggressive malignancies worldwide, with nearly 900,000 new cases diagnosed each year. Monitoring these cancers for recurrence or relapse typically relies on tissue... Read moreTechnology
view channel
Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
Detecting cancer early and tracking how it responds to treatment remains a major challenge, particularly when cancer cells are present in extremely low numbers in the bloodstream. Circulating tumor cells... Read more
AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
Colorectal cancer is one of the most common and deadly cancers worldwide, and accurately predicting patient survival remains a major clinical challenge. Traditional prognostic tools often rely on either... Read moreIndustry
view channel
BD and Penn Institute Collaborate to Advance Immunotherapy through Flow Cytometry
BD (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) has entered into a strategic collaboration with the Institute for Immunology and Immune Health (I3H, Philadelphia, PA, USA) at the University... Read more







