Single-Cell Sequencing Identifies Breast Cancer Risk
|
By LabMedica International staff writers Posted on 10 Feb 2020 |

Image: Summary of findings in primary BRCA2mut/+ breast tissues: Epithelial progenitor cells of heterozygous germline BRCA2 carriers exhibit DNA damage, failed replication stress, and damage responses, together with attenuated apoptosis. Loss of heterozygosity (LOH) analyses suggests that these findings may reflect a haploinsufficient phenotype for BRCA2 in vivo (Photo courtesy of Massachusetts General Hospital).
Women harboring heterozygous germline mutations of BRCA2 have a 50% to 80% risk of developing breast cancer, yet the pathogenesis of these cancers is poorly understood. Breast cancers arising in women who inherit heterozygous mutations in BRCA2 are associated with a high prevalence of genomic alterations and aggressive clinical behavior.
Because of the high risk of these cancers in BRCA2 mutation carriers, many such women elect to undergo bilateral mastectomy for breast cancer prevention. However, despite the unmet need for more effective breast cancer prevention approaches in this setting, the stepwise evolution from an otherwise normal BRCA2 heterozygous mutant (BRCA2mut/+) cell to an invasive malignancy has not been defined.
Medical scientists from the Massachusetts General Hospital (Boston, MA, USA) performed single-cell, whole-genome sequencing on cell populations sorted from breast tissue samples from more than two-dozen BRCA2 mutation-positive women who had undergone bilateral prophylactic mastectomies. The participants had just one affected copy of the breast- and ovarian-cancer linked gene.
The teams compared genetic profiles in these breast cell populations to those from matched control individuals, and were able to track down alterations that were over-represented in the BRCA2-deficient cells. For example, with this approach, they uncovered sub-chromosomal aneuploidy in more than one-quarter of luminal progenitor cells from BRCA2 mutation carriers. In breast epithelial cells, meanwhile, the heterozygous BRCA2 changes coincided with a jump in DNA damage, along with reduced apoptotic pathway or replication checkpoint activity.
The investigators focused on heterozygous BRCA2 mutation carriers who were breast cancer-free and had no previous exposure to chemotherapy, along with control individuals matched for factors ranging from age to hormone exposure and menopausal status who donated breast tissue samples after elective breast reduction surgeries. With the help of cell marker-based flow cytometry using a FACSAria flow cytometer (Becton Dickinson, Franklin Lakes, NJ, USA) the team distinguished between mature luminal, luminal progenitor, and basal epithelial cell populations in the breast tissue samples from participants with or without BRCA2 mutations.
The scientists used single-cell genome sequencing and algorithmic analyses to identify copy number shifts and other somatic alterations in each cell type, identifying patterns supported by RNA sequencing, single-cell polymerase chain reaction (PCR), and other follow-up analyses. In samples from 26 women with BRCA2 mutations and 28 without, they also saw an apparent expansion in the proportion of luminal progenitor cells with reduced stress and DNA damage response in samples from aging BRCA2 mutation carriers.
The authors concluded that although the early genomic changes they observed were likely to include many passenger events, they nevertheless may provide a quantifiable hallmark of the preneoplastic BRCA2 carrier state. Tracking the prevalence of DNA-damaged cells in the clinical setting could possibly improve risk prediction for these women, who are faced with the difficult choice of whether to undergo mastectomy long before cancer develops. The study was published on January 29, 2020 in the journal Science Advances.
Related Links:
Massachusetts General Hospital
Becton Dickinson
Because of the high risk of these cancers in BRCA2 mutation carriers, many such women elect to undergo bilateral mastectomy for breast cancer prevention. However, despite the unmet need for more effective breast cancer prevention approaches in this setting, the stepwise evolution from an otherwise normal BRCA2 heterozygous mutant (BRCA2mut/+) cell to an invasive malignancy has not been defined.
Medical scientists from the Massachusetts General Hospital (Boston, MA, USA) performed single-cell, whole-genome sequencing on cell populations sorted from breast tissue samples from more than two-dozen BRCA2 mutation-positive women who had undergone bilateral prophylactic mastectomies. The participants had just one affected copy of the breast- and ovarian-cancer linked gene.
The teams compared genetic profiles in these breast cell populations to those from matched control individuals, and were able to track down alterations that were over-represented in the BRCA2-deficient cells. For example, with this approach, they uncovered sub-chromosomal aneuploidy in more than one-quarter of luminal progenitor cells from BRCA2 mutation carriers. In breast epithelial cells, meanwhile, the heterozygous BRCA2 changes coincided with a jump in DNA damage, along with reduced apoptotic pathway or replication checkpoint activity.
The investigators focused on heterozygous BRCA2 mutation carriers who were breast cancer-free and had no previous exposure to chemotherapy, along with control individuals matched for factors ranging from age to hormone exposure and menopausal status who donated breast tissue samples after elective breast reduction surgeries. With the help of cell marker-based flow cytometry using a FACSAria flow cytometer (Becton Dickinson, Franklin Lakes, NJ, USA) the team distinguished between mature luminal, luminal progenitor, and basal epithelial cell populations in the breast tissue samples from participants with or without BRCA2 mutations.
The scientists used single-cell genome sequencing and algorithmic analyses to identify copy number shifts and other somatic alterations in each cell type, identifying patterns supported by RNA sequencing, single-cell polymerase chain reaction (PCR), and other follow-up analyses. In samples from 26 women with BRCA2 mutations and 28 without, they also saw an apparent expansion in the proportion of luminal progenitor cells with reduced stress and DNA damage response in samples from aging BRCA2 mutation carriers.
The authors concluded that although the early genomic changes they observed were likely to include many passenger events, they nevertheless may provide a quantifiable hallmark of the preneoplastic BRCA2 carrier state. Tracking the prevalence of DNA-damaged cells in the clinical setting could possibly improve risk prediction for these women, who are faced with the difficult choice of whether to undergo mastectomy long before cancer develops. The study was published on January 29, 2020 in the journal Science Advances.
Related Links:
Massachusetts General Hospital
Becton Dickinson
Latest Molecular Diagnostics News
- Simple Urine Test to Revolutionize Bladder Cancer Diagnosis and Treatment
- Blood Test to Enable Earlier and Simpler Detection of Liver Fibrosis
- Genetic Marker to Help Children with T-Cell Leukemia Avoid Unnecessary Chemotherapy
- Four-Gene Blood Test Rules Out Bacterial Lung Infection
- New PCR Test Improves Diagnostic Accuracy of Bacterial Vaginosis and Candida Vaginitis
- New Serum Marker-Editing Strategy to Improve Diagnosis of Neurological Diseases
- World’s First Genetic Type 1 Diabetes Risk Test Enables Early Detection
- Blood Test to Help Low-Risk Gastric Cancer Patients Avoid Unnecessary Surgery
- First-Of-Its-Kind Automated System Speeds Myeloma Diagnosis
- Blood Protein Profiles Predict Mortality Risk for Earlier Medical Intervention
- First Of Its Kind Blood Test Detects Gastric Cancer in Asymptomatic Patients
- Portable Molecular Test Detects STIs at POC in 15 Minutes
- Benchtop Analyzer Runs Chemistries, Immunoassays and Hematology in Single Device
- POC Bordetella Test Delivers PCR-Accurate Results in 15 Minutes
- Pinprick Blood Test Could Detect Disease 10 Years Before Symptoms Appear
- Refined C-Reactive Protein Cutoffs Help Assess Sepsis Risk in Preterm Babies
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
Since HIV was identified in 1983, more than 91 million people have contracted the virus, and over 44 million have died from related causes. Today, nearly 40 million individuals worldwide live with HIV-1,... Read more
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read moreMicrobiology
view channel
Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
Sepsis kills 11 million people worldwide every year and generates massive healthcare costs. In the USA and Europe alone, sepsis accounts for USD 100 billion in annual hospitalization expenses.... Read moreRapid POC Tuberculosis Test Provides Results Within 15 Minutes
Tuberculosis remains one of the world’s deadliest infectious diseases, and reducing new cases depends on identifying individuals with latent infection before it progresses. Current diagnostic tools often... Read more
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read morePathology
view channel
Tunable Cell-Sorting Device Holds Potential for Multiple Biomedical Applications
Isolating rare cancer cells from blood is essential for diagnosing metastasis and guiding treatment decisions, but remains technically challenging. Many existing techniques struggle to balance accuracy,... Read moreAI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
Diagnosing blood disorders depends on recognizing subtle abnormalities in cell size, shape, and structure, yet this process is slow, subjective, and requires years of expert training. Even specialists... Read moreTechnology
view channel
Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Identifying which genetic variants actually cause disease remains one of the biggest challenges in genomic medicine. Each person carries tens of thousands of DNA changes, yet only a few meaningfully alter... Read more
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








