Genome Wide Sequencing Study Reveals Why Some Cystic Fibrosis Patients Develop Fewer Lung Infections
|
By LabMedica International staff writers Posted on 23 Dec 2019 |

Image: In healthy people, the CFTR protein is embedded in the membrane of most cells, where it forms a channel for chlorine ions. In people with cystic fibrosis, an inherited mutation in the CFTR gene means their channels do not work as well and cells produce more mucus. The RNF5 protein inhibits CFTR, so people with cystic fibrosis who have genetic variations that decrease RNF5 expression have CFTR channels that function a little better, and thus are not as prone to infections as people with high RNF5 expression (Photo courtesy of University of California, San Diego)
Results published in a recent paper provided an explanation at the molecular level as to why some cystic fibrosis patients have a reduced tendency to contract chronic lung infections.
Cystic fibrosis (CF) is inherited in an autosomal recessive manner. It is caused by the presence of mutations in both copies of the gene for the cystic fibrosis transmembrane conductance regulator (CFTR) protein, which is involved in production of sweat, digestive fluids, and mucus. Those with a single working copy are carriers and otherwise mostly normal.
Mutations of the CFTR gene affecting chloride ion channel function lead to dysregulation of epithelial fluid transport in the lung, pancreas, and other organs, resulting in cystic fibrosis. When CFTR is not functional, secretions which are usually thin, instead become thick. In the lungs, this thicker mucus can promote bacterial growth, making lung infections a serious and chronic problem for many people with CF. Interestingly, some CF patients do not experience lung infections as early or as frequently as others.
Investigators at the University of California, San Diego (USA) now think they can explain the delayed development of lung infections by some CF patients. These investigators were in the process of studying the associations between genetic variation, gene expression, and disease within the major histocompatibility complex (MHC) region of genes. The MHC is a set of genes that code for cell surface proteins essential for the acquired immune system to recognize foreign molecules in vertebrates, which in turn determines histocompatibility. The main function of MHC molecules is to bind to antigens derived from pathogens and display them on the cell surface for recognition by the appropriate T-cells.
In conducting this study, the investigators used whole genome sequencing (WGS) of 419 individuals with CF to create a comprehensive map of regulatory variation in the MHC region. Building on this regulatory map, they explored GWAS signals for 4083 traits, detecting co-localization for 180 disease loci with eQTLs. Expression quantitative trait loci (eQTLs) are genomic loci that explain all or a fraction of variation in expression levels of mRNAs. An expression trait is a trait regarding the amount of an mRNA transcript or a protein, which are usually the product of a single gene with a specific chromosomal location. This distinguishes the expression from most classical complex traits, which are not the product of the expression of a single gene.
GWS results revealed a specific MHC region that was associated with decreased expression of the RNF5 gene. Previous studies had shown that inhibition of RNF5 in some CF patients resulted in rescue of mutant cystic fibrosis transmembrane conductance regulator function.
“We have known there is an association between MHC genes and bacterial colonization in patients with cystic fibrosis, but no one knew why,” said senior author Dr. Kelly A. Frazer, professor of pediatrics at the University of California, San Diego. “We assumed it was due to MHC’s involvement in the immune system. But now we know that is likely not the only mechanism - different expression levels of RNF5 may also play an important role. The cystic fibrosis field is trying to figure out what are the modifiers across the genome that increase or decrease the probability that an individual patient will respond to these expensive drugs. RNF5 may be one of these modifier genes.”
The study was published in the December 10, 2019, online edition of the journal eLife.
Related Links:
University of California, San Diego
Cystic fibrosis (CF) is inherited in an autosomal recessive manner. It is caused by the presence of mutations in both copies of the gene for the cystic fibrosis transmembrane conductance regulator (CFTR) protein, which is involved in production of sweat, digestive fluids, and mucus. Those with a single working copy are carriers and otherwise mostly normal.
Mutations of the CFTR gene affecting chloride ion channel function lead to dysregulation of epithelial fluid transport in the lung, pancreas, and other organs, resulting in cystic fibrosis. When CFTR is not functional, secretions which are usually thin, instead become thick. In the lungs, this thicker mucus can promote bacterial growth, making lung infections a serious and chronic problem for many people with CF. Interestingly, some CF patients do not experience lung infections as early or as frequently as others.
Investigators at the University of California, San Diego (USA) now think they can explain the delayed development of lung infections by some CF patients. These investigators were in the process of studying the associations between genetic variation, gene expression, and disease within the major histocompatibility complex (MHC) region of genes. The MHC is a set of genes that code for cell surface proteins essential for the acquired immune system to recognize foreign molecules in vertebrates, which in turn determines histocompatibility. The main function of MHC molecules is to bind to antigens derived from pathogens and display them on the cell surface for recognition by the appropriate T-cells.
In conducting this study, the investigators used whole genome sequencing (WGS) of 419 individuals with CF to create a comprehensive map of regulatory variation in the MHC region. Building on this regulatory map, they explored GWAS signals for 4083 traits, detecting co-localization for 180 disease loci with eQTLs. Expression quantitative trait loci (eQTLs) are genomic loci that explain all or a fraction of variation in expression levels of mRNAs. An expression trait is a trait regarding the amount of an mRNA transcript or a protein, which are usually the product of a single gene with a specific chromosomal location. This distinguishes the expression from most classical complex traits, which are not the product of the expression of a single gene.
GWS results revealed a specific MHC region that was associated with decreased expression of the RNF5 gene. Previous studies had shown that inhibition of RNF5 in some CF patients resulted in rescue of mutant cystic fibrosis transmembrane conductance regulator function.
“We have known there is an association between MHC genes and bacterial colonization in patients with cystic fibrosis, but no one knew why,” said senior author Dr. Kelly A. Frazer, professor of pediatrics at the University of California, San Diego. “We assumed it was due to MHC’s involvement in the immune system. But now we know that is likely not the only mechanism - different expression levels of RNF5 may also play an important role. The cystic fibrosis field is trying to figure out what are the modifiers across the genome that increase or decrease the probability that an individual patient will respond to these expensive drugs. RNF5 may be one of these modifier genes.”
The study was published in the December 10, 2019, online edition of the journal eLife.
Related Links:
University of California, San Diego
Latest Molecular Diagnostics News
- New Diagnostic Method Detects Pneumonia at POC in Low-Resource Settings
- Blood Immune Cell Analysis Detects Parkinson’s Before Symptoms Appear
- New Diagnostic Marker for Ovarian Cancer to Enable Early Disease Detection

- Urine Test Detects Early Stage Pancreatic Cancer
- Genomic Test Could Reduce Lymph Node Biopsy Surgery in Melanoma Patients
- Urine Test Could Replace Painful Kidney Biopsies for Lupus Patients
- Blood Test Guides Post-Surgical Immunotherapy for Muscle-Invasive Bladder Cancer
- Mitochondrial DNA Mutations from Kidney Stressors Could Predict Future Organ Decline
- Blood Test Could Predict Bariatric Surgery Outcomes in Teenagers
- ctDNA Blood Test to Help Personalize Postsurgical Colon Cancer Treatment
- AI Powered Blood Test Predicts Suicide Risk in Bipolar Patients
- DNA Sensor Enables Molecular Detection from Single Blood Drop
- DNA-Powered Test Accurately Detects E. Coli Lookalike Bacteria
- World’s Fastest DNA Sequencing Technique to Revolutionize NICU Genomic Care
- Blood Test Uses Cell-Free DNA to Detect ALS Faster and More Accurately
- Multi-Cancer Early Detection Blood Test Increases Cancer Detection
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreHematology
view channel
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read more
Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
Modern cancer immunotherapies rely on the ability of CD8⁺ T cells to rapidly multiply within tumors, generating the immune force needed to eliminate cancer cells. However, the biological triggers behind... Read moreMicrobiology
view channel
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read more
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read morePathology
view channel
New Molecular Analysis Tool to Improve Disease Diagnosis
Accurately distinguishing between similar biomolecules such as proteins is vital for biomedical research and diagnostics, yet existing analytical tools often fail to detect subtle structural or compositional... Read more
Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
Diagnosing and monitoring eye and neurodegenerative diseases often requires invasive procedures to access ocular fluids. Ocular fluids like aqueous humor and vitreous humor contain valuable molecular information... Read moreTechnology
view channel
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read more
Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
Blood tests remain a cornerstone of medical diagnostics, but traditional imaging and analysis methods can be slow, costly, and reliant on dyes or contrast agents. Now, scientists have developed a real-time,... Read moreIndustry
view channel
Qiagen Acquires Single-Cell Omics Firm Parse Biosciences
QIAGEN (Venlo, Netherlands) has entered into a definitive agreement to fully acquire Parse Biosciences (Seattle, WA, USA), a provider of scalable, instrument-free solutions for single-cell research.... Read more
Puritan Medical Products Showcasing Innovation at AMP2025 in Boston
Puritan Medical Products (Guilford, ME, USA), the world’s most trusted manufacturer of swabs and specimen collection devices, is set to exhibit at AMP2025 in Boston, Massachusetts, from November 11–15.... Read more
Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more






 assay.jpg)

