Single-Cell Analysis Uncovers Regulatory Program in Rare Leukemia
By LabMedica International staff writers Posted on 18 Dec 2019 |

Image: Bone marrow smear from a patient with mixed phenotype acute leukemia. The marrow aspirate smear has 71% blasts by differential count, with a similar dimorphic morphology as in the peripheral blood with numerous blasts with a dimorphic morphology (Photo courtesy of Elizabeth Courville, MD).
Identifying the causes of human diseases requires deconvolution of abnormal molecular phenotypes spanning DNA accessibility, gene expression and protein abundance. Mixed-phenotype acute leukemia exhibits features of both acute myeloid leukemia and acute lymphoblastic leukemia and, as such, is marked by features of multiple hematopoietic lineages.
Mixed phenotype acute leukemia is a very rare type of leukemia where more than one type of leukemia occurs at the same time. This can happen when a person has either: both acute lymphoblastic leukemia (ALL) blasts (cancer cells) and acute myeloblastic leukemia (AML) blasts at the same time or leukemic blasts that have features of both ALL and AML on the same cell.
Scientists at the Stanford University School of Medicine (Stanford, CA, USA) and their colleagues identified pathological molecular features of mixed-phenotype acute leukemia by first analyzing the single-cell transcriptomic and epigenetic profiles of healthy blood cells during their development. Once they established profiles of those healthy cells, they examined how the profiles of leukemic cells compared.
The team performed droplet-based cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and single-cell assay for transposase-accessible chromatin by sequencing (scATAC-seq) of more than 35,000 healthy bone marrow and peripheral blood mononuclear cells. With this, they generated multi-omic maps of hematopoiesis. They validated the maps and found them to reflect the essential phenotypic, transcriptomic, and epigenetic features of blood development. They developed a framework to analyze signatures of hematopoietic development at the single-cell level. With this, they then sought to examine how those signatures differed between healthy and leukemic cells.
The team assayed thousands of single cells from mixed-phenotype acute leukemia (MPAL) samples using both CITE-seq and scATAC-seq and identified 4,616 genes that were differentially upregulated and 72,196 significantly upregulated peaks. They projected these single-cell analyses onto their hematopoietic maps to find epigenetic and gene expression diversity and grouped the cells into broad hematopoietic development compartments. They focused on the transcription factors that might regulate these leukemia programs and found that RUNX1 motifs were enriched among certain MPAL subsets.
RUNX1, they noted, is a frequently mutated gene in hematological malignancies, and they uncovered 732 genes regulated by a RUNX1-containing distal element in at least two MPAL subsets. Additionally, CD69 which has been linked to lymphocyte activation through JAK-STAT signaling and lymphocyte retention in lymphoid organs was differentially upregulated in nearly every MPAL subset. The authors concluded that their results demonstrate how integrative, multiomic analysis of single cells within the framework of normal development can reveal both distinct and shared molecular mechanisms of disease from patient samples. The study was published on December 2, 2019 in the journal Nature Biotechnology.
Related Links:
Stanford University School of Medicine
Mixed phenotype acute leukemia is a very rare type of leukemia where more than one type of leukemia occurs at the same time. This can happen when a person has either: both acute lymphoblastic leukemia (ALL) blasts (cancer cells) and acute myeloblastic leukemia (AML) blasts at the same time or leukemic blasts that have features of both ALL and AML on the same cell.
Scientists at the Stanford University School of Medicine (Stanford, CA, USA) and their colleagues identified pathological molecular features of mixed-phenotype acute leukemia by first analyzing the single-cell transcriptomic and epigenetic profiles of healthy blood cells during their development. Once they established profiles of those healthy cells, they examined how the profiles of leukemic cells compared.
The team performed droplet-based cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and single-cell assay for transposase-accessible chromatin by sequencing (scATAC-seq) of more than 35,000 healthy bone marrow and peripheral blood mononuclear cells. With this, they generated multi-omic maps of hematopoiesis. They validated the maps and found them to reflect the essential phenotypic, transcriptomic, and epigenetic features of blood development. They developed a framework to analyze signatures of hematopoietic development at the single-cell level. With this, they then sought to examine how those signatures differed between healthy and leukemic cells.
The team assayed thousands of single cells from mixed-phenotype acute leukemia (MPAL) samples using both CITE-seq and scATAC-seq and identified 4,616 genes that were differentially upregulated and 72,196 significantly upregulated peaks. They projected these single-cell analyses onto their hematopoietic maps to find epigenetic and gene expression diversity and grouped the cells into broad hematopoietic development compartments. They focused on the transcription factors that might regulate these leukemia programs and found that RUNX1 motifs were enriched among certain MPAL subsets.
RUNX1, they noted, is a frequently mutated gene in hematological malignancies, and they uncovered 732 genes regulated by a RUNX1-containing distal element in at least two MPAL subsets. Additionally, CD69 which has been linked to lymphocyte activation through JAK-STAT signaling and lymphocyte retention in lymphoid organs was differentially upregulated in nearly every MPAL subset. The authors concluded that their results demonstrate how integrative, multiomic analysis of single cells within the framework of normal development can reveal both distinct and shared molecular mechanisms of disease from patient samples. The study was published on December 2, 2019 in the journal Nature Biotechnology.
Related Links:
Stanford University School of Medicine
Latest Molecular Diagnostics News
- D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
- New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
- Chemiluminescence Immunoassays Support Diagnosis of Alzheimer’s Disease
- Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury
- Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression
- Simple DNA PCR-Based Lab Test to Enable Personalized Treatment of Bacterial Vaginosis
- Rapid Diagnostic Test to Halt Mother-To-Child Hepatitis B Transmission
- Simple Urine Test Could Help Patients Avoid Invasive Scans for Kidney Cancer
- New Bowel Cancer Blood Test to Improve Early Detection
- Refined Test Improves Parkinson’s Disease Diagnosis
- New Method Rapidly Diagnoses CVD Risk Via Molecular Blood Screening
- Blood Test Shows Promise for Early Detection of Dementia
- CRISPR-Based Diagnostic Test Detects Pathogens in Blood Without Amplification
- Portable Blood-Based Device Detects Colon Cancer
- New DNA Test Diagnoses Bacterial Infections Faster and More Accurately
- Innovative Bio-Detection Platform Improves Early Cancer Screening and Monitoring
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read moreCerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
In recent years, cancer immunotherapy has emerged as a promising approach where the patient's immune system is harnessed to fight cancer. One form of immunotherapy, called CAR-T-cell therapy, involves... Read more
New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
Preterm infants are particularly vulnerable due to their organs still undergoing development, which can lead to difficulties in breathing, eating, and regulating body temperature. This is especially true... Read more
Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read moreMicrobiology
view channel
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read morePathology
view channel
AI Model Predicts Patient Response to Bladder Cancer Treatment
Each year in the United States, around 81,000 new cases of bladder cancer are diagnosed, leading to approximately 17,000 deaths annually. Muscle-invasive bladder cancer (MIBC) is a severe form of bladder... Read more
New Laser-Based Method to Accelerate Cancer Diagnosis
Researchers have developed a method to improve cancer diagnostics and other diseases. Collagen, a key structural protein, plays various roles in cell activity. A novel multidisciplinary study published... Read more
New AI Model Predicts Gene Variants’ Effects on Specific Diseases
In recent years, artificial intelligence (AI) has greatly enhanced our ability to identify a vast number of genetic variants in increasingly larger populations. However, up to half of these variants are... Read more
Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
Coeliac disease is an autoimmune disorder triggered by the consumption of gluten, causing symptoms such as stomach cramps, diarrhea, skin rashes, weight loss, fatigue, and anemia. Due to the wide variation... Read moreTechnology
view channel
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Tecan Acquires ELISA Immunoassay Assets from Revvity's Cisbio Bioassays
Tecan Group (Männedorf, Switzerland) has entered into an agreement to acquire certain assets relating to key ELISA immunoassay products from Cisbio Bioassays SAS (Codolet, France), a subsidiary of the... Read more