Methylation Signature Identified for Brain Metastases of Lung Cancer
|
By LabMedica International staff writers Posted on 17 Oct 2019 |

Image: A histopathology of meningeal carcinomatosis with infiltration of the brain gray matter and perivascular malignant cells (Photo courtesy of Zuzana Gdovinova.
When lung cancer metastasizes to the brain, it means the primary lung cancer has created a secondary cancer in the brain. About 20% to 40% of adults with non-small cell lung cancer go on to develop brain metastases at some point during their illness.
DNA methylation is a process by which methyl groups are added to the DNA molecule. Methylation can change the activity of a DNA segment without changing the sequence. When located in a gene promoter, DNA methylation typically acts to repress gene transcription.
Scientists at the Zhejiang Cancer Hospital (Hangzhou, China) performed capture-based targeted sequencing to look for somatic mutations in 60 treatment-naïve advanced non-small cell lung cancer (NSCLC) patients using a panel of 520 cancer-related genes, as well as DNA methylation analyses using a methylation panel consisting of 100,000 CpG sites. The patients were split into three groups: one with brain metastases, a second with leptomeningeal metastases, and the third with no metastases.
The team identified 370 mutations in the lung primary lesions and 574 mutations in the brain metastases. Among them, 242 mutations were shared, of these, 128 were lung primary-specific and 332 were brain-specific. Among the mutations specific to the brain metastases, 82% of them were copy number variations (CNVs), which was significantly higher than the CNVs found in the primary tumors. Only 16% of the CNVs were found in both the lungs and the brain. The investigators also performed a pathway analysis of the genes that were only mutated in the brain and found an enrichment of genes in the PI3K-AKT and focal adhesion pathways.
In the leptomeningeal metastasis group, the team found a significant concordance between the driver mutations in primary lung tissue and the metastases in cerebrospinal fluid. These metastases, however, did not have a significantly larger number of CNVs than the primary tumors. They also found that the list of mutated genes was comparable in all three patient cohorts; they next turned to DNA methylation analysis to see if they could find any markers indicating a higher likelihood of developing metastasis.
The methylation analysis revealed distinct patterns, with 268 methylation blocks being significantly differentially methylated between primary lung lesions and brain metastases. Among those, 211 blocks were hypermethylated in the brain and the remaining 57 blocks were hypermethylated in lung lesions. When they compared the leptomeningeal metastases to the non-metastatic patients, they found 323 blocks that were differentially methylated. Of these, the brain and leptomeningeal metastasis groups shared 15 methylation blocks that the scientists believe may be prognostic of central nervous system metastasis. Through a stepwise regression analysis, the team was able to narrow the signature further to six methylation blocks. The study was presented at the Annual meeting of the European Society for Medical Oncology held September 27- October 1, 2019, in Barcelona, Spain.
Related Links:
Zhejiang Cancer Hospital
DNA methylation is a process by which methyl groups are added to the DNA molecule. Methylation can change the activity of a DNA segment without changing the sequence. When located in a gene promoter, DNA methylation typically acts to repress gene transcription.
Scientists at the Zhejiang Cancer Hospital (Hangzhou, China) performed capture-based targeted sequencing to look for somatic mutations in 60 treatment-naïve advanced non-small cell lung cancer (NSCLC) patients using a panel of 520 cancer-related genes, as well as DNA methylation analyses using a methylation panel consisting of 100,000 CpG sites. The patients were split into three groups: one with brain metastases, a second with leptomeningeal metastases, and the third with no metastases.
The team identified 370 mutations in the lung primary lesions and 574 mutations in the brain metastases. Among them, 242 mutations were shared, of these, 128 were lung primary-specific and 332 were brain-specific. Among the mutations specific to the brain metastases, 82% of them were copy number variations (CNVs), which was significantly higher than the CNVs found in the primary tumors. Only 16% of the CNVs were found in both the lungs and the brain. The investigators also performed a pathway analysis of the genes that were only mutated in the brain and found an enrichment of genes in the PI3K-AKT and focal adhesion pathways.
In the leptomeningeal metastasis group, the team found a significant concordance between the driver mutations in primary lung tissue and the metastases in cerebrospinal fluid. These metastases, however, did not have a significantly larger number of CNVs than the primary tumors. They also found that the list of mutated genes was comparable in all three patient cohorts; they next turned to DNA methylation analysis to see if they could find any markers indicating a higher likelihood of developing metastasis.
The methylation analysis revealed distinct patterns, with 268 methylation blocks being significantly differentially methylated between primary lung lesions and brain metastases. Among those, 211 blocks were hypermethylated in the brain and the remaining 57 blocks were hypermethylated in lung lesions. When they compared the leptomeningeal metastases to the non-metastatic patients, they found 323 blocks that were differentially methylated. Of these, the brain and leptomeningeal metastasis groups shared 15 methylation blocks that the scientists believe may be prognostic of central nervous system metastasis. Through a stepwise regression analysis, the team was able to narrow the signature further to six methylation blocks. The study was presented at the Annual meeting of the European Society for Medical Oncology held September 27- October 1, 2019, in Barcelona, Spain.
Related Links:
Zhejiang Cancer Hospital
Latest Molecular Diagnostics News
- Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
- Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
- Two-in-One DNA Analysis Improves Diagnostic Accuracy While Saving Time and Costs
- “Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
- New Tool Maps Chromosome Shifts in Cancer Cells to Predict Tumor Evolution
- Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
- Newly-Identified Parkinson’s Biomarkers to Enable Early Diagnosis Via Blood Tests
- New Blood Test Could Detect Pancreatic Cancer at More Treatable Stage
- Liquid Biopsy Could Replace Surgical Biopsy for Diagnosing Primary Central Nervous Lymphoma
- New Tool Reveals Hidden Metabolic Weakness in Blood Cancers
- World's First Blood Test Distinguishes Between Benign and Cancerous Lung Nodules
- Rapid Test Uses Mobile Phone to Identify Severe Imported Malaria Within Minutes
- Gut Microbiome Signatures Predict Long-Term Outcomes in Acute Pancreatitis
- Blood Test Promises Faster Answers for Deadly Fungal Infections
- Blood Test Could Detect Infection Exposure History
- Urine-Based MRD Test Tracks Response to Bladder Cancer Surgery
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







