LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Study Supports Body Area Sensory Networks for Diagnostic Monitoring

By LabMedica International staff writers
Posted on 26 Aug 2019
Image: Researchers used metallic ink to screen-print an antenna and sensor onto a stretchable sticker designed to adhere to skin and track pulse and other health indicators, and transmit these readings to a receiver on a person\'s clothing (Photo courtesy of Bao Lab, Stanford University).
Image: Researchers used metallic ink to screen-print an antenna and sensor onto a stretchable sticker designed to adhere to skin and track pulse and other health indicators, and transmit these readings to a receiver on a person\'s clothing (Photo courtesy of Bao Lab, Stanford University).
The first steps have been taken on the path leading to development of a body area sensor network, which is a collection of networked sensors that can be used to remotely monitor human physiological signals.

For its application in next-generation personalized healthcare systems, stretchable on-skin sensors have to be seamlessly meshed with rigid silicon readout circuits. Toward this end, investigators at Stanford University (Palo Alto, CA, USA) devleoped a body area sensory network (a bodyNET) composed of chip-free and battery-free stretchable on-skin sensor tags that were wirelessly linked to flexible readout circuits attached to clothing. This design offered a conformal skin-mimicking interface by removing all direct contacts between rigid components and the human body. Thus, this design addressed the mechanical incompatibility issue between soft on-skin devices and rigid high-performance silicon electronics.

For communications between the skin sensors and the clothing-bound receivers, the investigators introduced an unconventional radiofrequency identification technology where the wireless sensors were deliberately detuned to increase the tolerance of strain-induced changes in electronic properties. Thus, the bodyNET comprised chip-free and battery-free stretchable on-skin sensor tags, which had been screen-printed with metallic ink, that were wirelessly linked to flexible readout circuits attached to textiles.

The investigators used this prototype bodyNET to simultaneously and continuously analyse an individual’s pulse, breath, and body movement.

Ultimately, it is intended that this technology evolve into a device that would be comfortable to wear and have no batteries or rigid circuits to prevent the body sensors from stretching and contracting with the skin in response to changes in the subject’s physiology.

"We think one day it will be possible to create a full-body skin-sensor array to collect physiological data without interfering with a person's normal behavior," said senior author Dr. Zhenan Bao, professor of chemical engineering at Stanford University.

The bodyNET concept was discussed in a paper published in the August 15, 2019, online edition of the journal Nature Electronics.

Related Links:
Stanford University

Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Alcohol Testing Device
Dräger Alcotest 7000
Human Estradiol Assay
Human Estradiol CLIA Kit

Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more