We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Stress-Induced tRNA Fragments Prove Early Predictors of Epileptic Seizures

By LabMedica International staff writers
Posted on 24 Jun 2019
Print article
: A tertiary structure of transfer RNA (tRNA) (Photo courtesy of Wikimedia Commons).
: A tertiary structure of transfer RNA (tRNA) (Photo courtesy of Wikimedia Commons).
Elevated levels of stress-induced fragments of transfer RNA in the blood may serve as biomarkers that indicate potential for an epileptic seizure hours before the event actually occurs.

A transfer RNA (abbreviated tRNA) is an adaptor molecule composed of ribonucleic acid, typically 76 to 90 nucleotides in length, which serves as the physical link between the mRNA and the amino acid sequence of proteins. tRNA does this by carrying an amino acid to the protein synthetic machinery of a cell (ribosome) as directed by a three-nucleotide sequence (codon) in a molecule of mRNA. As such, tRNAs are a necessary component of translation, the biological synthesis of new proteins in accordance with the genetic code. When cells are stressed, tRNAs are cut into fragments.

Investigators at the Royal College of Surgeons in Ireland (Dublin) and the related biotech company FutureNeuro (Dublin, Ireland) proposed that higher levels of tRNA fragments in the blood might indicate that brain cells were under stress in the build up to a seizure event.

To test this hypothesis, the investigators collected plasma samples during video-EEG monitoring of focal epilepsy patients. Small RNA sequencing identified significant differences in three tRNA fragments (5′GlyGCC, 5′AlaTGC, and 5′GluCTC) between epilepsy patients and control subjects. Levels of these tRNA fragments were higher in pre-seizure than post-seizure samples, suggesting they may serve as biomarkers of seizure risk in epilepsy patients.

The investigators designed PCR-based assays to quantify tRNA fragments in a cohort of pre- and post-seizure plasma samples from focal epilepsy patients and healthy controls. Analysis of the results indicated that tRNA fragments potently distinguished pre- from post-seizure patients. Furthermore, elevated tRNA fragments levels were not detected in patients with psychogenic non-epileptic seizures, and did not result from medication tapering.

"New technologies to remove the unpredictability of uncontrolled seizures for people with epilepsy are a very real possibility," said contributing author Dr. David Henshall, professor of molecular physiology and neuroscience at the Royal College of Surgeons in Ireland. "Building on this research we in FutureNeuro hope to develop a test prototype, similar to a blood sugar monitor that can potentially predict when a seizure might occur."

The tRNA biomarker study was published in the April 30, 2019, online edition of the Journal of Clinical Investigation.

Related Links:
The Royal College of Surgeons in Ireland
FutureNeuro


Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Malaria Test
STANDARD Q Malaria P.f/Pan Ag
New
HIV-1 Test
HIV-1 Real Time RT-PCR Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Sekisui Diagnostics UK Ltd.