We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Large GWAS Pinpoints Ovarian Cancer Risk Genes

By LabMedica International staff writers
Posted on 13 May 2019
Print article
Image: A micrograph of a mucinous ovarian carcinoma (Photo courtesy of Wikimedia Commons).
Image: A micrograph of a mucinous ovarian carcinoma (Photo courtesy of Wikimedia Commons).
Results of a large genome-wide association study identified 34 genes that are associated with an increased risk for developing the earliest stages of ovarian cancer.

The current study, which was carried out by investigators at the University of California, Los Angeles (USA) and the Dana-Farber Cancer Institute (Boston, MA, USA), continued the assessment of large-scale genetic data that had been gathered over a period of more than 10 years by the Ovarian Cancer Association Consortium. Those investigators had found more than 30 regions in the genome associated with ovarian cancer after having compared the genetic profiles of about 25,000 women with ovarian cancer and 45,000 control subjects.

Applying advanced analytical tools, the current team of investigators identified 34 genes that were associated with an increased risk for developing ovarian cancer. Furthermore, this study implicated at least one target gene for six out of 13 distinct genome-wide association study regions and pinpointed 23 new candidate susceptibility genes for high-grade serous ovarian cancer.

"If you detect ovarian cancer really early, then the survival rate is very high, nearly 90% percent," said contributing author Dr. Bogdan Pasaniuc, associate professor of pathology and laboratory medicine at the University of California, Los Angles. "But that does not happen often. Most cases are found at a later stage and survival drops dramatically. That is why we want to understand the genetics behind it - so we can do a better job at predicting who is at a higher risk of developing this cancer."

"Whenever you inherit a piece of DNA from your parents, you do not inherit just every base pair of the genome, you inherit big chunks," said Dr. Pasanuic. "That means that if you inherit a gene mutation in a given region, you inherit the entire region, which can carry 10 to 20 genes at a time. This makes it very hard to pinpoint specific genes from specific regions. With the identification of these genes, we now have a narrow list of genes that can help us better predict ovarian cancer risks in women who may have never known that they were at a higher risk for developing the disease. While we are not there yet, we are hoping this study will lead to better outcomes because we will be able to monitor women earlier, when the cancer is easier to treat."

The ovarian cancer study was published in the May 1, 2019, online edition of the journal Nature Genetics.

Related Links:
University of California, Los Angeles
Dana-Farber Cancer Institute

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
HIV-1 Test
HIV-1 Real Time RT-PCR Kit
New
Silver Member
Verification Panels for Assay Development & QC
Seroconversion Panels

Print article

Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Sekisui Diagnostics UK Ltd.