New Genetic Test Detects Mutations in High-Risk Groups
By LabMedica International staff writers Posted on 07 May 2019 |

Image: The QuickGene-610L nucleic acid isolation system (Photo courtesy of Autogen).
A new low-cost genetic test has been developed that accurately identified more than 200 known disease-causing gene variations in two high-risk populations, the Old Order Amish and Old Order Mennonites of Lancaster County, Pennsylvania.
Over the past decade, DNA sequencing techniques have significantly improved to enable the massively parallel sequencing of many DNA molecules simultaneously. These techniques are often referred to as next-generation sequencing, or NGS, and are quickly advancing our knowledge of genetic variation in humans. Although NGS is a powerful technique, there are still inherent limitations with these technologies in their ability to detect chromosomal abnormalities, structural variants, and copy number variations (CNVs) within a single assay.
Scientists associated with the Clinic for Special Children (CSC; Strasburg, PA, USA) enrolled 63 subjects using an approved Institutional Review Board (IRB) clinical registry and specimen banking protocol. Blood was collected, and DNA was extracted from 1 to 2 mL of blood using a QuickGene-610L Nucleic Acid Isolation System. At this time this targeted gene panel has only been validated using blood; however, the library preparation technique has been demonstrated to work with dried filter paper and saliva.
A custom NGS gene panel kit was developed using AMP technology. One hundred sixty-eight unique genes were targeted, with a focus on 202 alleles associated with 162 different syndromes. To assess the test's accuracy, the team used an alternate method to validate all genetic variants. For instance, they compared 48 samples with prior whole exome sequencing results, and found 100% agreement between the two methods. In total, 309 variants were detected; 273 pathogenic single nucleotide polymorphisms (SNPs) and small indels, 35 copy number variants (CNVs), of which 33 were associated with a known disease, and one chromosomal abnormality.
The authors concluded that implementation of a community-wide carrier screening program would ultimately serve multiple purposes. First, by identifying at-risk couples and performing diagnostic testing on cord blood from their children, it can be ensured that most children affected by a recessive genetic disease in these communities are identified as asymptomatic newborns. For diseases like maple syrup urine disease (MSUD), this early detection decreases morbidity and mortality.
Erik G. Puffenberger, PhD, a study author and laboratory director at CSC, said, “Due to their small number of community founders, the Plain populations over time have come to exhibit relatively high carrier rates for a small set of genetic diseases. We needed a methodology for a single procedure to test individuals for all known genetic variations related to those conditions.” The study was published on April 24, 2019, in the Journal of Molecular Diagnostics.
Related Links:
Clinic for Special Children
Over the past decade, DNA sequencing techniques have significantly improved to enable the massively parallel sequencing of many DNA molecules simultaneously. These techniques are often referred to as next-generation sequencing, or NGS, and are quickly advancing our knowledge of genetic variation in humans. Although NGS is a powerful technique, there are still inherent limitations with these technologies in their ability to detect chromosomal abnormalities, structural variants, and copy number variations (CNVs) within a single assay.
Scientists associated with the Clinic for Special Children (CSC; Strasburg, PA, USA) enrolled 63 subjects using an approved Institutional Review Board (IRB) clinical registry and specimen banking protocol. Blood was collected, and DNA was extracted from 1 to 2 mL of blood using a QuickGene-610L Nucleic Acid Isolation System. At this time this targeted gene panel has only been validated using blood; however, the library preparation technique has been demonstrated to work with dried filter paper and saliva.
A custom NGS gene panel kit was developed using AMP technology. One hundred sixty-eight unique genes were targeted, with a focus on 202 alleles associated with 162 different syndromes. To assess the test's accuracy, the team used an alternate method to validate all genetic variants. For instance, they compared 48 samples with prior whole exome sequencing results, and found 100% agreement between the two methods. In total, 309 variants were detected; 273 pathogenic single nucleotide polymorphisms (SNPs) and small indels, 35 copy number variants (CNVs), of which 33 were associated with a known disease, and one chromosomal abnormality.
The authors concluded that implementation of a community-wide carrier screening program would ultimately serve multiple purposes. First, by identifying at-risk couples and performing diagnostic testing on cord blood from their children, it can be ensured that most children affected by a recessive genetic disease in these communities are identified as asymptomatic newborns. For diseases like maple syrup urine disease (MSUD), this early detection decreases morbidity and mortality.
Erik G. Puffenberger, PhD, a study author and laboratory director at CSC, said, “Due to their small number of community founders, the Plain populations over time have come to exhibit relatively high carrier rates for a small set of genetic diseases. We needed a methodology for a single procedure to test individuals for all known genetic variations related to those conditions.” The study was published on April 24, 2019, in the Journal of Molecular Diagnostics.
Related Links:
Clinic for Special Children
Latest Molecular Diagnostics News
- Liquid Biopsy Assay Detects Recurrence in CRC Patients Prior to Imaging
- Ultra Fast Synovial Fluid Test Diagnoses Osteoarthritis and Rheumatoid Arthritis In 10 Minutes
- Genetic-Based Tool Predicts Survival Outcomes of Pancreatic Cancer Patients
- Urine Test Diagnoses Early-Stage Prostate Cancer
- New Genetic Tool Analyzes Umbilical Cord Blood to Predict Future Disease
- Spinal Fluid Biomarker for Parkinson’s Disease Offers Early and Accurate Diagnosis
- Revolutionary Blood Test Detects 30 Different Types of Cancers with 98% Accuracy
- Simple Blood Test Better Predicts Heart Disease Risk
- New Blood Test Detects 12 Common Cancers Before Symptoms Appear
- Blood Test Could Predict Relapse of Autoimmune Blood Vessel Disease
- First-of-its-Kind Blood Test Detects Trauma-Related Diseases
- Key Gene Identified in Common Heart Disease Unlocks Life-Saving Diagnostic Potential
- Cheap Cell-Free DNA Based Test Accurately Predicts Preterm Birth
- RNA Blood Test Detects Cancers and Resistance to Treatment
- IL-6 Outperforms Traditional Tests for Early Sepsis Detection
- Simple Blood Test Improves Heart Attack and Stroke Risk Prediction
Channels
Clinical Chemistry
view channel
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read more
Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse
Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New Test Diagnoses Bacterial Meningitis Quickly and Accurately
Bacterial meningitis is a potentially fatal condition, with one in six patients dying and half of the survivors experiencing lasting symptoms. Therefore, rapid diagnosis and treatment are critical.... Read more
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read more
AI-Driven Analysis of Digital Pathology Images to Improve Pediatric Sarcoma Subtyping
Pediatric sarcomas are rare and diverse tumors that can develop in various types of soft tissue, such as muscle, tendons, fat, blood or lymphatic vessels, nerves, or the tissue surrounding joints.... Read more
AI-Based Model Predicts Kidney Cancer Therapy Response
Each year, nearly 435,000 individuals are diagnosed with clear cell renal cell carcinoma (ccRCC), making it the most prevalent subtype of kidney cancer. When the disease spreads, anti-angiogenic therapies... Read more
Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read moreTechnology
view channel
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more